Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
X. Q. Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:243: 105020-105020 被引量:9
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JXC完成签到,获得积分10
2秒前
3秒前
周凡淇发布了新的文献求助10
3秒前
Liquid发布了新的文献求助10
4秒前
6秒前
xiang完成签到,获得积分10
7秒前
科研通AI2S应助独特靖巧采纳,获得10
7秒前
doby发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
愉快捕完成签到,获得积分10
11秒前
11秒前
高山我梦完成签到,获得积分10
13秒前
星辰大海应助doby采纳,获得30
13秒前
初雪完成签到,获得积分10
14秒前
愉快捕发布了新的文献求助10
14秒前
不配.应助xxxhl采纳,获得20
14秒前
FFCC发布了新的文献求助10
15秒前
雪要努力ya完成签到,获得积分10
16秒前
song完成签到 ,获得积分10
16秒前
高君奇发布了新的文献求助10
16秒前
SciGPT应助YZL采纳,获得10
17秒前
周凡淇发布了新的文献求助10
18秒前
1234567应助文件撤销了驳回
20秒前
23秒前
26秒前
Mao完成签到,获得积分10
27秒前
CipherSage应助TGU的小马同学采纳,获得10
28秒前
txy发布了新的文献求助10
29秒前
迷你的鹏飞完成签到,获得积分10
29秒前
lili完成签到,获得积分10
30秒前
31秒前
流浪者完成签到,获得积分20
31秒前
pb完成签到,获得积分10
32秒前
32秒前
倒立的松鼠完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136302
求助须知:如何正确求助?哪些是违规求助? 2787407
关于积分的说明 7781286
捐赠科研通 2443393
什么是DOI,文献DOI怎么找? 1299137
科研通“疑难数据库(出版商)”最低求助积分说明 625357
版权声明 600939