Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105020-105020 被引量:18
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yingying发布了新的文献求助10
1秒前
可爱的函函应助香蕉静芙采纳,获得10
2秒前
张浩发布了新的文献求助10
2秒前
3秒前
fei发布了新的文献求助150
3秒前
4秒前
4秒前
5秒前
依灵完成签到,获得积分10
5秒前
5秒前
充电宝应助mariawang采纳,获得10
6秒前
王哈哈关注了科研通微信公众号
7秒前
kkdkg发布了新的文献求助10
7秒前
时笙发布了新的文献求助10
7秒前
苏利文完成签到,获得积分10
8秒前
8秒前
小二郎应助尔尔采纳,获得30
8秒前
9秒前
小丑鱼儿发布了新的文献求助10
9秒前
10秒前
Rubby应助Sissi采纳,获得10
10秒前
11秒前
隐形夕阳发布了新的文献求助50
12秒前
搞学术的发布了新的文献求助10
12秒前
Freddie发布了新的文献求助10
14秒前
淡淡梦容发布了新的文献求助10
14秒前
14秒前
mmol发布了新的文献求助10
15秒前
可靠的冰烟完成签到,获得积分10
15秒前
Ava应助kkdkg采纳,获得10
16秒前
Bio应助AA简单男孩采纳,获得26
17秒前
搜集达人应助虚幻靖易采纳,获得10
17秒前
Notdodead应助yyds采纳,获得10
17秒前
科研通AI2S应助Lu采纳,获得10
17秒前
18秒前
18秒前
搞怪的人龙完成签到,获得积分10
19秒前
淡淡梦容完成签到,获得积分10
19秒前
情怀应助star采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021