亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:243: 105020-105020 被引量:23
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
33秒前
41秒前
喜悦的小土豆完成签到 ,获得积分10
57秒前
大模型应助顺心的满天采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得30
2分钟前
浮游应助aj采纳,获得10
2分钟前
上官若男应助aj采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
无限的绿真完成签到,获得积分10
3分钟前
余温煮鱼完成签到,获得积分10
4分钟前
小荷完成签到,获得积分10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
5分钟前
小荷发布了新的文献求助10
5分钟前
5分钟前
我是老大应助李小猫采纳,获得30
5分钟前
灵巧的灵雁完成签到,获得积分10
5分钟前
5分钟前
李小猫发布了新的文献求助30
5分钟前
浮游应助ChloeF采纳,获得10
6分钟前
6分钟前
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
天天开心完成签到 ,获得积分10
7分钟前
拿铁小笼包完成签到,获得积分10
7分钟前
7分钟前
眼睛大智宸完成签到 ,获得积分10
7分钟前
7分钟前
yf发布了新的文献求助10
7分钟前
领导范儿应助顺心的满天采纳,获得10
8分钟前
英勇的梨愁完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
小王好饿完成签到 ,获得积分10
8分钟前
yf发布了新的文献求助10
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302712
求助须知:如何正确求助?哪些是违规求助? 4449750
关于积分的说明 13848693
捐赠科研通 4336103
什么是DOI,文献DOI怎么找? 2380752
邀请新用户注册赠送积分活动 1375688
关于科研通互助平台的介绍 1342066