Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:243: 105020-105020 被引量:23
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yeeaaiia发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
球球爱科研完成签到,获得积分10
4秒前
4秒前
4秒前
mm555完成签到 ,获得积分10
5秒前
5秒前
lili发布了新的文献求助10
5秒前
6秒前
6秒前
阅遍SCI完成签到,获得积分10
7秒前
英勇的战斗机完成签到,获得积分10
7秒前
秋不苏完成签到 ,获得积分10
7秒前
卿卿完成签到,获得积分20
7秒前
7秒前
8秒前
wuxunxun2015发布了新的文献求助10
9秒前
乐观小蕊发布了新的文献求助10
10秒前
brookqu完成签到,获得积分10
10秒前
Wu发布了新的文献求助10
10秒前
11秒前
陈美宏发布了新的文献求助10
13秒前
LY发布了新的文献求助10
13秒前
枳实发布了新的文献求助10
13秒前
13秒前
15秒前
PORCO完成签到,获得积分10
16秒前
文静雨安完成签到,获得积分10
17秒前
18秒前
小二郎应助卿卿采纳,获得10
18秒前
kxy0311发布了新的文献求助10
18秒前
共享精神应助小黄的主人采纳,获得10
18秒前
19秒前
醉熏的老师完成签到,获得积分10
19秒前
笨笨的外套完成签到,获得积分10
20秒前
21秒前
简简单单完成签到,获得积分10
23秒前
领导范儿应助li采纳,获得10
23秒前
刘蕊发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598832
求助须知:如何正确求助?哪些是违规求助? 4684218
关于积分的说明 14834289
捐赠科研通 4664987
什么是DOI,文献DOI怎么找? 2537445
邀请新用户注册赠送积分活动 1504928
关于科研通互助平台的介绍 1470655