Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate

堆积 过度拟合 集成学习 计算机科学 遗传算法 人工智能 随机森林 机器学习 选择(遗传算法) 支持向量机 集合预报 模式识别(心理学) 算法 人工神经网络 化学 有机化学
作者
Xiaojin Hao,Zhengguang Chen,Shujuan Yi,Jinming Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:243: 105020-105020 被引量:23
标识
DOI:10.1016/j.chemolab.2023.105020
摘要

Stacking ensemble learning is one of the most effective integration technologies and is increasingly applied to near-infrared spectroscopy combined with chemometrics methods. The prediction accuracy of Stacking is primarily affected by the selection of different models. However, many current studies are mainly artificial selection models' combinations. It affects the model's prediction accuracy and increases the algorithm's difficulty. It is difficult to efficiently and accurately find the optimal configuration scheme. This study applies a genetic algorithm to find the optimal base and meta learner combinations in Stacking ensemble learning. This method uses the near-infrared spectral data set of corn seed germination rate. First, select the best pretreatment methods for seven models, including Gaussian process regression (GPR), SVR, PLS, etc. The above seven single learners after pretreatment are taken as the candidate base learner, and then random forest (RF), SVR, PLS, and GPR are taken as the potential meta learner; use a genetic algorithm to select the optimal model combination configuration and generate GA-Stacking algorithm. The model prediction results of the improved model GA-Stacking are compared with several single models and Stacking ensemble learning via the artificial selection model combinations. The results show that the prediction performance using the GA-Stacking ensemble learning model is optimal, R2 is 0.9022, and RMSE is 0.1100. The experiment shows that the model combination selected by the genetic algorithm has significantly improved the prediction performance of the Stacking ensemble learning model and reduced the risk of the model's overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
残雪孤烛灭完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
体贴代容发布了新的文献求助10
3秒前
阚乐乐完成签到,获得积分10
4秒前
4秒前
kiminonawa应助读书的时候采纳,获得30
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
昏睡的千凝完成签到,获得积分20
7秒前
玖熙发布了新的文献求助50
7秒前
7秒前
哒哒哒发布了新的文献求助10
7秒前
kkkjjj完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
英姑应助第九个黑夜采纳,获得10
9秒前
袁奇点完成签到,获得积分10
10秒前
qdsj2033发布了新的文献求助10
10秒前
科研通AI6应助执着的凌香采纳,获得10
10秒前
诚心一兰发布了新的文献求助10
11秒前
kkkjjj发布了新的文献求助10
12秒前
汉堡包应助lory采纳,获得10
12秒前
kiminonawa应助务实青筠采纳,获得10
12秒前
陈词丶发布了新的文献求助10
13秒前
15秒前
哒哒哒完成签到,获得积分10
15秒前
16秒前
16秒前
川农辅导员完成签到,获得积分10
16秒前
NexusExplorer应助自然自行车采纳,获得10
18秒前
DDD应助诚心一兰采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
CipherSage应助明芬采纳,获得10
20秒前
钟迪完成签到,获得积分10
20秒前
牛牛发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800