清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation

采样(信号处理) 计算机科学 透视图(图形) 领域(数学分析) 领域知识 对偶(语法数字) 数学 人工智能 艺术 数学分析 文学类 滤波器(信号处理) 计算机视觉
作者
Zefeng Zheng,Luyao Teng,Wei Zhang,Naiqi Wu,Shaohua Teng
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 2269-2291 被引量:4
标识
DOI:10.1109/jas.2023.123342
摘要

Most existing domain adaptation (DA) methods aim to explore favorable performance under complicated environments by sampling. However, there are three unsolved problems that limit their efficiencies: i) they adopt global sampling but neglect to exploit global and local sampling simultaneously; ii) they either transfer knowledge from a global perspective or a local perspective, while overlooking transmission of confident knowledge from both perspectives; and iii) they apply repeated sampling during iteration, which takes a lot of time. To address these problems, knowledge transfer learning via dual density sampling (KTL-DDS) is proposed in this study, which consists of three parts: i) Dual density sampling (DDS) that jointly leverages two sampling methods associated with different views, i.e., global density sampling that extracts representative samples with the most common features and local density sampling that selects representative samples with critical boundary information; ii) Consistent maximum mean discrepancy (CMMD) that reduces intra- and cross-domain risks and guarantees high consistency of knowledge by shortening the distances of every two subsets among the four subsets collected by DDS; and iii) Knowledge dissemination (KD) that transmits confident and consistent knowledge from the representative target samples with global and local properties to the whole target domain by preserving the neighboring relationships of the target domain. Mathematical analyses show that DDS avoids repeated sampling during the iteration. With the above three actions, confident knowledge with both global and local properties is transferred, and the memory and running time are greatly reduced. In addition, a general framework named dual density sampling approximation (DDSA) is extended, which can be easily applied to other DA algorithms. Extensive experiments on five datasets in clean, label corruption (LC), feature missing (FM), and LC&FM environments demonstrate the encouraging performance of KTL-DDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
allia完成签到 ,获得积分10
18秒前
碧蓝的机器猫完成签到 ,获得积分10
29秒前
wujiwuhui完成签到 ,获得积分10
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科yt完成签到,获得积分10
38秒前
robalance给robalance的求助进行了留言
45秒前
刘辰完成签到 ,获得积分10
59秒前
l老王完成签到 ,获得积分10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
robalance关注了科研通微信公众号
1分钟前
猪猪hero应助顷刻采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
laohei94_6完成签到 ,获得积分10
1分钟前
科研通AI2S应助聪慧的月饼采纳,获得10
1分钟前
1分钟前
robalance发布了新的文献求助10
1分钟前
1分钟前
robalance完成签到,获得积分10
2分钟前
summer完成签到,获得积分10
2分钟前
科研小白完成签到 ,获得积分10
2分钟前
hunajx完成签到,获得积分10
2分钟前
诚心的服饰完成签到,获得积分10
2分钟前
东方欲晓完成签到 ,获得积分0
2分钟前
胜胜糖完成签到 ,获得积分10
2分钟前
Ava应助卡卡西西西采纳,获得10
2分钟前
袁雪蓓完成签到 ,获得积分10
3分钟前
墨言无殇完成签到 ,获得积分10
3分钟前
风秋杨完成签到 ,获得积分10
3分钟前
加贝完成签到 ,获得积分10
3分钟前
烟花应助酷炫的背包采纳,获得10
3分钟前
3分钟前
3分钟前
兔葵燕麦完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
酷炫的背包完成签到,获得积分10
4分钟前
雪妮完成签到 ,获得积分10
4分钟前
科研佟完成签到 ,获得积分10
5分钟前
oaoalaa完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575128
求助须知:如何正确求助?哪些是违规求助? 3145110
关于积分的说明 9458116
捐赠科研通 2846383
什么是DOI,文献DOI怎么找? 1564829
邀请新用户注册赠送积分活动 732619
科研通“疑难数据库(出版商)”最低求助积分说明 719188