Region Assisted Sketch Colorization

素描 计算机科学 人工智能 像素 编码器 草图识别 块(置换群论) 模式识别(心理学) 特征(语言学) 背景(考古学) 计算机视觉 算法 数学 地理 哲学 操作系统 手势识别 语言学 考古 手势 几何学
作者
Ning Wang,Muyao Niu,Zhihui Wang,Kun Hu,Bin Liu,Zhiyong Wang,Haojie Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6142-6154 被引量:6
标识
DOI:10.1109/tip.2023.3326682
摘要

Automatic sketch colorization is a challenging task that aims to generate a color image from a sketch, primarily due to its inherently ill-posed nature. While many approaches have shown promising results, two significant challenges remain: limited color patterns and a wide range of artifacts such as color bleeding and semantic inconsistencies among relevant regions. These issues stem from the operation of traditional convolutional structures, which capture structural features in a pixel-wise manner, resulting in inadequate utilization of regional information within the sketch. Therefore, we propose the Region-Assisted Sketch Coloring (RASC) method, which introduces an intermediate representation called the 'Region Map' to explicitly characterize the regional information of the sketch. This Region Map is derived from the input sketch and is effectively formulated by our RASC architecture, enhancing the perception of region-wise features beyond the original pixel-wise features. Specifically, we start by employing the sketch encoder to extract hierarchical feature maps from the input sketches. Subsequently, we introduce a coarse-to-fine decoder comprising a series of Region-based Modulation (RM) blocks. This decoder modulates features that combine the modulation results of its previous block and the sketch features of the corresponding encoder block with our Region Formulation module. Each module explicitly formulates the sketch features in a region-wise manner. This accurately captures both the inner-region local style and inter-region global context dependency, resulting in various color patterns and fewer synthesis artifacts. Our experimental results show that our proposed method surpasses state-of-the-art methods in both synthetic and real sketch datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
大方百招完成签到,获得积分10
1秒前
小蘑菇应助静静采纳,获得10
1秒前
江屿完成签到,获得积分10
2秒前
kuai0Yu完成签到,获得积分10
3秒前
Japrin完成签到,获得积分10
3秒前
直率的宛海完成签到,获得积分10
4秒前
Laputa完成签到,获得积分10
4秒前
妮妮爱smile完成签到,获得积分10
4秒前
JIA完成签到 ,获得积分10
5秒前
czyzyzy完成签到,获得积分10
5秒前
经冰夏发布了新的文献求助10
6秒前
sos发布了新的文献求助10
6秒前
6秒前
引商刻羽完成签到,获得积分10
6秒前
学术小白完成签到,获得积分10
7秒前
眯眯眼的衬衫应助江屿采纳,获得10
7秒前
千寻完成签到,获得积分10
7秒前
CNS完成签到,获得积分10
9秒前
Ting完成签到,获得积分10
9秒前
9秒前
伍寒烟完成签到,获得积分10
9秒前
CIOOICO1发布了新的文献求助10
10秒前
小猴儿发布了新的文献求助10
10秒前
11秒前
11秒前
经冰夏完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
流北爷完成签到,获得积分10
13秒前
岁岁菌完成签到,获得积分10
13秒前
赘婿应助王小冉采纳,获得10
14秒前
王小小发布了新的文献求助10
14秒前
扎心应助温婉采纳,获得10
15秒前
Lucas应助肖2采纳,获得10
15秒前
现代绮玉完成签到,获得积分10
15秒前
15秒前
123发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479