Quantitation of surface-enhanced Raman spectroscopy based on deep learning networks

罗丹明6G 拉曼散射 再现性 拉曼光谱 深度学习 卷积神经网络 预处理器 材料科学 表面增强拉曼光谱 分析化学(期刊) 人工神经网络 定量分析(化学) 人工智能 模式识别(心理学) 计算机科学 生物系统 化学 分子 光学 色谱法 物理 生物 有机化学
作者
Zhou-Xiang Hu,Baobo Zou,Guo Yang,You-Tong Wei,Cheng Hui Yang,Yu‐Ping Yang,Shuai Feng,Chuanbo Li,Guling Zhang
出处
期刊:Physica B-condensed Matter [Elsevier]
卷期号:673: 415466-415466 被引量:2
标识
DOI:10.1016/j.physb.2023.415466
摘要

Surface-enhanced Raman scattering (SERS) is a highly sensitive detection method that is widely applied in numerous fields. However, the distribution of SERS "hotspots" and their sensitive response at the nanoscale render the reproducibility and quantitative analysis of SERS spectra difficult. In this study, an analytical method based on deep learning was applied for the quantitative detection of SERS spectra. Using Ag/TiO2 composite nanofilms as SERS substrates, the SERS spectra of Rhodamine 6G (R6G) at concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L were employed as the datasets for quantitative analysis. Using the normalized SERS spectral dataset, the deep learning network autonomously searched for features related to quantitative detection under complex conditions with less dependence on Raman peak intensities and without additional preprocessing, which afforded deep-learning-based SERS quantitative detection with excellent reproducibility and feasibility. SERS spectra of stable physical condition were extracted for statistical analysis, and the trained neural network model adequately predicted the trend of variations in the concentration. Using R6G as the probe molecule, a superior recognition result with an accuracy of 98.1 % for the concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L was obtained using a convolutional neural network on the test set. Therefore, this method provides a feasible new strategy to overcome the quantitative detection limitations of current SERS analysis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxian发布了新的文献求助10
刚刚
Orange应助vvi采纳,获得30
刚刚
慌慌完成签到,获得积分10
刚刚
VuuVuu完成签到,获得积分10
刚刚
1秒前
melon完成签到,获得积分10
1秒前
LZCCC完成签到,获得积分10
1秒前
2秒前
2秒前
虚拟的灵槐完成签到,获得积分20
3秒前
zz完成签到,获得积分10
3秒前
3秒前
VuuVuu发布了新的文献求助10
3秒前
科研通AI2S应助cooling采纳,获得10
4秒前
开放如天完成签到 ,获得积分10
5秒前
Owen应助xiemeili采纳,获得10
5秒前
5秒前
TWOTP发布了新的文献求助10
6秒前
月狐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
XD完成签到,获得积分20
6秒前
wentyli发布了新的文献求助10
7秒前
轻松盼雁完成签到,获得积分10
7秒前
螃蟹发布了新的文献求助10
8秒前
chongjian完成签到,获得积分10
8秒前
Ran-HT完成签到,获得积分0
9秒前
9秒前
贤惠的枫完成签到 ,获得积分10
10秒前
10秒前
wang完成签到 ,获得积分10
10秒前
菜穗子完成签到,获得积分10
10秒前
cooling给cooling的求助进行了留言
11秒前
彭于晏应助@@@采纳,获得10
12秒前
paipai完成签到 ,获得积分10
12秒前
13秒前
滟滟完成签到,获得积分10
13秒前
Wjc完成签到,获得积分20
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952