Quantitation of surface-enhanced Raman spectroscopy based on deep learning networks

罗丹明6G 拉曼散射 再现性 拉曼光谱 深度学习 卷积神经网络 预处理器 材料科学 表面增强拉曼光谱 分析化学(期刊) 人工神经网络 定量分析(化学) 人工智能 模式识别(心理学) 计算机科学 生物系统 化学 分子 光学 色谱法 物理 有机化学 生物
作者
Zhou-Xiang Hu,Baobo Zou,Guo Yang,You-Tong Wei,Cheng Hui Yang,Yu‐Ping Yang,Shuai Feng,Chuanbo Li,Guling Zhang
出处
期刊:Physica B-condensed Matter [Elsevier BV]
卷期号:673: 415466-415466 被引量:2
标识
DOI:10.1016/j.physb.2023.415466
摘要

Surface-enhanced Raman scattering (SERS) is a highly sensitive detection method that is widely applied in numerous fields. However, the distribution of SERS "hotspots" and their sensitive response at the nanoscale render the reproducibility and quantitative analysis of SERS spectra difficult. In this study, an analytical method based on deep learning was applied for the quantitative detection of SERS spectra. Using Ag/TiO2 composite nanofilms as SERS substrates, the SERS spectra of Rhodamine 6G (R6G) at concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L were employed as the datasets for quantitative analysis. Using the normalized SERS spectral dataset, the deep learning network autonomously searched for features related to quantitative detection under complex conditions with less dependence on Raman peak intensities and without additional preprocessing, which afforded deep-learning-based SERS quantitative detection with excellent reproducibility and feasibility. SERS spectra of stable physical condition were extracted for statistical analysis, and the trained neural network model adequately predicted the trend of variations in the concentration. Using R6G as the probe molecule, a superior recognition result with an accuracy of 98.1 % for the concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L was obtained using a convolutional neural network on the test set. Therefore, this method provides a feasible new strategy to overcome the quantitative detection limitations of current SERS analysis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
swapping完成签到 ,获得积分10
3秒前
彭栋发布了新的文献求助10
5秒前
所所应助萨日呼采纳,获得10
6秒前
8秒前
隐形曼青应助hh采纳,获得50
10秒前
义气如萱发布了新的文献求助10
11秒前
小俊完成签到,获得积分10
13秒前
Nana发布了新的文献求助20
14秒前
小二郎应助修管子采纳,获得10
15秒前
mie完成签到,获得积分10
18秒前
18秒前
19秒前
寄语明月发布了新的文献求助10
21秒前
hh发布了新的文献求助50
23秒前
mie发布了新的文献求助10
23秒前
CipherSage应助wu基督教采纳,获得10
24秒前
lalala完成签到,获得积分10
25秒前
科研通AI5应助Bressanone采纳,获得10
26秒前
26秒前
28秒前
FashionBoy应助anna采纳,获得10
33秒前
33秒前
35秒前
大智若愚骨头完成签到,获得积分10
36秒前
36秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
9℃发布了新的文献求助10
39秒前
科研通AI2S应助lm采纳,获得10
40秒前
山谷发布了新的文献求助10
41秒前
感动黄豆发布了新的文献求助10
43秒前
45秒前
46秒前
46秒前
46秒前
48秒前
Owen应助晒太阳的加菲猫采纳,获得10
49秒前
anna发布了新的文献求助10
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105