Quantitation of surface-enhanced Raman spectroscopy based on deep learning networks

罗丹明6G 拉曼散射 再现性 拉曼光谱 深度学习 卷积神经网络 预处理器 材料科学 表面增强拉曼光谱 分析化学(期刊) 人工神经网络 定量分析(化学) 人工智能 模式识别(心理学) 计算机科学 生物系统 化学 分子 光学 色谱法 物理 有机化学 生物
作者
Zhou-Xiang Hu,Baobo Zou,Guo Yang,You-Tong Wei,Cheng Hui Yang,Yu‐Ping Yang,Shuai Feng,Chuanbo Li,Guling Zhang
出处
期刊:Physica B-condensed Matter [Elsevier]
卷期号:673: 415466-415466 被引量:2
标识
DOI:10.1016/j.physb.2023.415466
摘要

Surface-enhanced Raman scattering (SERS) is a highly sensitive detection method that is widely applied in numerous fields. However, the distribution of SERS "hotspots" and their sensitive response at the nanoscale render the reproducibility and quantitative analysis of SERS spectra difficult. In this study, an analytical method based on deep learning was applied for the quantitative detection of SERS spectra. Using Ag/TiO2 composite nanofilms as SERS substrates, the SERS spectra of Rhodamine 6G (R6G) at concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L were employed as the datasets for quantitative analysis. Using the normalized SERS spectral dataset, the deep learning network autonomously searched for features related to quantitative detection under complex conditions with less dependence on Raman peak intensities and without additional preprocessing, which afforded deep-learning-based SERS quantitative detection with excellent reproducibility and feasibility. SERS spectra of stable physical condition were extracted for statistical analysis, and the trained neural network model adequately predicted the trend of variations in the concentration. Using R6G as the probe molecule, a superior recognition result with an accuracy of 98.1 % for the concentrations of 10−3, 10−4, 10−5, and 10−6 mol/L was obtained using a convolutional neural network on the test set. Therefore, this method provides a feasible new strategy to overcome the quantitative detection limitations of current SERS analysis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒癌晚期完成签到,获得积分10
刚刚
香蕉觅云应助zoe采纳,获得10
1秒前
win完成签到,获得积分20
1秒前
丘比特应助健壮发夹采纳,获得10
2秒前
4秒前
4秒前
5秒前
长情绿凝完成签到,获得积分10
5秒前
Ry发布了新的文献求助10
6秒前
脑洞疼应助liyuxuan采纳,获得10
7秒前
夏荧荧发布了新的文献求助10
9秒前
隐形曼青应助sheep采纳,获得10
9秒前
酷波er应助偶吼吼采纳,获得10
9秒前
10秒前
JamesPei应助火花采纳,获得10
10秒前
科研通AI2S应助Louie~采纳,获得10
11秒前
ding应助拉屎不带纸采纳,获得10
11秒前
11秒前
牛奶开水完成签到 ,获得积分10
12秒前
vffg完成签到,获得积分10
12秒前
12秒前
Millennial完成签到,获得积分10
14秒前
Accept完成签到,获得积分10
14秒前
Jack Wong发布了新的文献求助10
15秒前
酷炫迎波完成签到,获得积分10
15秒前
张张张完成签到,获得积分10
16秒前
来自DF的小白完成签到,获得积分10
17秒前
17秒前
long完成签到,获得积分0
17秒前
17秒前
18秒前
体贴映阳完成签到 ,获得积分10
18秒前
zoe发布了新的文献求助10
18秒前
19秒前
周政杰完成签到 ,获得积分10
20秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
20秒前
默默觅珍完成签到 ,获得积分10
21秒前
kkssrrrr完成签到 ,获得积分10
21秒前
打打应助Manyiu采纳,获得10
21秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175