已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leveraging topology for domain adaptive road segmentation in satellite and aerial imagery

分割 计算机科学 领域(数学分析) 人工智能 水准点(测量) 拓扑(电路) 计算机视觉 模式识别(心理学) 地理 地图学 数学 组合数学 数学分析
作者
Javed Iqbal,Asif Masood,Waqas Sultani,Mohsen Ali
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 106-117
标识
DOI:10.1016/j.isprsjprs.2023.10.020
摘要

Getting precise aspects of road through segmentation from remote sensing imagery is useful for many real-world applications such as autonomous vehicles, urban development and planning, and achieving sustainable development goals (SDGs).1 Roads are only a small part of the image, and their appearance, type, width, elevation, directions, etc. exhibit large variations across geographical areas. Furthermore, due to differences in urbanization styles, planning, and the natural environments; regions along the roads vary significantly. Due to these variations among the train and test domains (domain shift), the road segmentation algorithms fail to generalize to new geographical locations. Unlike the generic domain alignment scenarios, road segmentation has no scene structure and generic domain adaptive segmentation methods are unable to enforce topological properties like continuity, connectivity, smoothness, etc., thus resulting in degraded domain alignment. In this work, we propose a topology-aware unsupervised domain adaptation approach for road segmentation in remote sensing imagery. During domain adaptation for road segmentation, we predict road skeleton, an auxiliary task to enforce the topological constraints. To enforce consistent predictions of road and skeleton, especially in the unlabeled target domain, the conformity loss is defined across the skeleton prediction head and the road-segmentation head. Furthermore, for self-training, we filter out the noisy pseudo-labels by using a connectivity-based pseudo-labels refinement strategy, on both road and skeleton segmentation heads, thus avoiding holes and discontinuities. Extensive experiments on the benchmark datasets show the effectiveness of the proposed approach compared to existing state-of-the-art methods. Specifically, for SpaceNet to DeepGlobe adaptation, the proposed approach outperforms the competing methods by a minimum margin of 6.6%, 6.7%, and 9.8% in IoU, F1-score, and APLS, respectively. (The source code is available on Github).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sheila发布了新的文献求助10
1秒前
陆浩学化学完成签到 ,获得积分10
1秒前
zb发布了新的文献求助10
2秒前
fxy发布了新的文献求助10
3秒前
4秒前
zcz完成签到,获得积分20
4秒前
4秒前
6秒前
6秒前
wgglegg发布了新的文献求助10
9秒前
myg8627发布了新的文献求助10
10秒前
mc完成签到,获得积分10
12秒前
小二郎应助ff采纳,获得10
13秒前
15秒前
普鲁卡因完成签到,获得积分10
15秒前
英俊的铭应助anbiii采纳,获得10
18秒前
仄咅发布了新的文献求助10
19秒前
22秒前
22秒前
科研通AI2S应助hhuzk采纳,获得10
23秒前
fhznuli发布了新的文献求助10
23秒前
24秒前
24秒前
丫丫发布了新的文献求助10
26秒前
shawwcus发布了新的文献求助10
27秒前
27秒前
Orange应助huhuhu采纳,获得10
28秒前
Lucas应助不吃别夹采纳,获得10
28秒前
29秒前
30秒前
丫丫完成签到,获得积分20
33秒前
34秒前
34秒前
顷刻发布了新的文献求助10
35秒前
Zoeytam发布了新的文献求助10
36秒前
fosca完成签到,获得积分10
36秒前
mafukairi应助Sunshine采纳,获得10
37秒前
37秒前
哲子子完成签到,获得积分10
37秒前
我比脚酷发布了新的文献求助10
38秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219496
求助须知:如何正确求助?哪些是违规求助? 2868323
关于积分的说明 8160534
捐赠科研通 2535378
什么是DOI,文献DOI怎么找? 1367766
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618424