已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leveraging topology for domain adaptive road segmentation in satellite and aerial imagery

分割 计算机科学 领域(数学分析) 人工智能 水准点(测量) 拓扑(电路) 计算机视觉 模式识别(心理学) 地理 地图学 数学 数学分析 组合数学
作者
Javed Iqbal,Asif Masood,Waqas Sultani,Mohsen Ali
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 106-117
标识
DOI:10.1016/j.isprsjprs.2023.10.020
摘要

Getting precise aspects of road through segmentation from remote sensing imagery is useful for many real-world applications such as autonomous vehicles, urban development and planning, and achieving sustainable development goals (SDGs).1 Roads are only a small part of the image, and their appearance, type, width, elevation, directions, etc. exhibit large variations across geographical areas. Furthermore, due to differences in urbanization styles, planning, and the natural environments; regions along the roads vary significantly. Due to these variations among the train and test domains (domain shift), the road segmentation algorithms fail to generalize to new geographical locations. Unlike the generic domain alignment scenarios, road segmentation has no scene structure and generic domain adaptive segmentation methods are unable to enforce topological properties like continuity, connectivity, smoothness, etc., thus resulting in degraded domain alignment. In this work, we propose a topology-aware unsupervised domain adaptation approach for road segmentation in remote sensing imagery. During domain adaptation for road segmentation, we predict road skeleton, an auxiliary task to enforce the topological constraints. To enforce consistent predictions of road and skeleton, especially in the unlabeled target domain, the conformity loss is defined across the skeleton prediction head and the road-segmentation head. Furthermore, for self-training, we filter out the noisy pseudo-labels by using a connectivity-based pseudo-labels refinement strategy, on both road and skeleton segmentation heads, thus avoiding holes and discontinuities. Extensive experiments on the benchmark datasets show the effectiveness of the proposed approach compared to existing state-of-the-art methods. Specifically, for SpaceNet to DeepGlobe adaptation, the proposed approach outperforms the competing methods by a minimum margin of 6.6%, 6.7%, and 9.8% in IoU, F1-score, and APLS, respectively. (The source code is available on Github).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
7秒前
8秒前
yuwen发布了新的文献求助10
9秒前
隐形曼青应助Frozen采纳,获得30
10秒前
斯文败类应助张不大采纳,获得10
11秒前
要减肥完成签到,获得积分20
11秒前
英姑应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
ll应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
13秒前
脑洞疼应助Yuan采纳,获得10
15秒前
谨慎的友安完成签到 ,获得积分10
18秒前
安详的海风完成签到,获得积分10
19秒前
欧阳完成签到 ,获得积分10
28秒前
科研通AI5应助静静采纳,获得10
30秒前
czy完成签到 ,获得积分10
30秒前
31秒前
34秒前
haoran发布了新的文献求助10
37秒前
38秒前
xuxu发布了新的文献求助10
40秒前
iris完成签到,获得积分10
41秒前
姜雍发布了新的文献求助10
42秒前
沧海云完成签到 ,获得积分10
42秒前
45秒前
kaka完成签到,获得积分0
47秒前
kaki发布了新的文献求助10
50秒前
53秒前
kingwill完成签到,获得积分0
54秒前
今天又学明白了完成签到 ,获得积分10
54秒前
MIMI完成签到,获得积分10
55秒前
haoran完成签到,获得积分20
57秒前
明昼完成签到,获得积分10
58秒前
kaki完成签到,获得积分20
58秒前
58秒前
Frozen发布了新的文献求助30
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629