角砾岩
地质学
地球化学
蒸发岩
碎屑岩
底辟
硬石膏
片岩
变质岩
沉积岩
古生物学
构造盆地
石膏
作者
Liangliang Zhuang,Yucai Song,David N. Leach,Yingchao Liu,Zengqian Hou,Mahmood Fard
出处
期刊:Geological Society of America Bulletin
[Geological Society of America]
日期:2023-08-17
被引量:3
摘要
The Angouran deposit (19.3 Mt at 23.4% Zn and 4% Pb) is the second-largest Zn-Pb deposit in Iran. The deposit is hosted in a Neoproterozoic−Cambrian marble-schist sequence within a breccia pipe in a domal structure, with sulfide mineralization under low-temperature hydrothermal conditions (<200 ºC). The features of the ore-hosting breccias are similar to known halokinetic diapir breccias in the world but evaporite minerals are subtle. The common types of breccia clasts in the Angouran breccia pipe include a matrix-supported angular clast (float breccia) with highly variable sizes and orientations and exotic volcanic clasts. The volcanic clasts were derived from the underlying Miocene volcanic rocks, evidenced by the consistent petrography and zircon U-Pb ages dated at 20−19 Ma. Abundant smithsonite pseudomorphs after anhydrite and anhydrite inclusions within sphalerite and pre-ore marcasite in the breccia matrix indicate that the breccia pipe contains abundant anhydrite prior to the Zn-Pb mineralization. The enrichment of evaporite is also supported by the occurrence of considerable double-terminated quartz crystals that contain spherical and tabular carbonate inclusions and anomalously high Li, Na, and K concentrations, relatively high B concentration, and high δ18O values (up to 28.3‰). These observations suggest the Angouran deposit formed in a former halokinetic diapir breccia pipe. The halokinetic diapirism was possibly triggered by thrust loading of the marble-schist sequence over the Miocene evaporite beds during the Arabia-Eurasia continental collision. Halokinetic structures elsewhere in the Angouran region warrant this consideration. Most of the evaporite minerals in the breccia pipe were dissolved and replaced before and/or during subsequent Zn-Pb sulfide and smithsonite mineralization events. This study provides a good example for the identification of vanished evaporites, halokinetic structure, and associated Mississippi Valley-type mineralization.
科研通智能强力驱动
Strongly Powered by AbleSci AI