已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and identification of particles on silicon wafers based on light scattering and absorption spectroscopy and Machine learning

薄脆饼 材料科学 粒子(生态学) 半导体器件制造 散射 吸收(声学) 计算机科学 人工智能 光电子学 光学 物理 复合材料 海洋学 地质学
作者
Fengfeng Zhou,Xingyu Fu,Siying Chen,Martin Byung‐Guk Jun
出处
期刊:Manufacturing letters [Elsevier]
卷期号:35: 991-998
标识
DOI:10.1016/j.mfglet.2023.08.048
摘要

Modern semiconductor manufacturing technology have a high-quality requirement of the wafers, and therefore the wafer inspection technique becomes increasingly important. During the manufacturing processes, particles can attach on the surface of the wafer which is an important factor of the quality and can even make it impossible to use the wafer. In this research, we introduce a particle detection and identification method based on the scattering and absorption spectra of the particles. A machine learning algorithm was developed to capture the feature of the particles and is able to identify the particle material from the scattering spectrum. Three different particles (Al2O3, SiC, and Si) were used to test this system. The validation accuracy achieves higher than 98% after 5 iterations training. The system was tested by scattering these three particles on the same wafer in different regions without mixing with each other. The results shows that particle Al2O3 and Si were identified with a high accuracy, whereas it is still challenging for the system to correctly label SiC particles. This can be improved by a larger dataset to enhance the generalization ability of the machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子完成签到,获得积分10
4秒前
肥肥猪发布了新的文献求助10
6秒前
Lucas应助葛力采纳,获得10
7秒前
8秒前
搜集达人应助蓝胖子采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
11秒前
pan应助科研通管家采纳,获得10
11秒前
11秒前
DRX完成签到,获得积分10
11秒前
马马虎虎发布了新的文献求助10
12秒前
上官若男应助Singularity采纳,获得10
15秒前
John完成签到 ,获得积分10
18秒前
18秒前
Gameven完成签到,获得积分10
20秒前
调皮帽子完成签到,获得积分10
20秒前
21秒前
21秒前
科研通AI2S应助文静的翠安采纳,获得10
24秒前
爱吃巧克力应助调皮帽子采纳,获得10
26秒前
27秒前
加油呀完成签到 ,获得积分10
28秒前
浮笙发布了新的文献求助10
28秒前
29秒前
马马虎虎关注了科研通微信公众号
29秒前
rxq完成签到,获得积分10
30秒前
31秒前
yaooo完成签到,获得积分10
31秒前
32秒前
34秒前
kento发布了新的文献求助100
38秒前
夏樱桐发布了新的文献求助10
39秒前
44秒前
44秒前
45秒前
LIUDAN发布了新的文献求助10
47秒前
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234275
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216394
捐赠科研通 2548249
什么是DOI,文献DOI怎么找? 1377627
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302