亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
小文发布了新的文献求助10
18秒前
1分钟前
1分钟前
ZengQiu发布了新的文献求助10
1分钟前
catherine发布了新的文献求助10
1分钟前
顾矜应助ZengQiu采纳,获得150
1分钟前
1分钟前
我是乔治发布了新的文献求助10
2分钟前
2分钟前
转眼快十年完成签到,获得积分10
2分钟前
2分钟前
XZY完成签到 ,获得积分10
3分钟前
我是乔治发布了新的文献求助10
3分钟前
catherine完成签到,获得积分10
4分钟前
4分钟前
TJW发布了新的文献求助10
4分钟前
TJW完成签到,获得积分10
4分钟前
4分钟前
LLL完成签到,获得积分10
4分钟前
所所应助畅快的篮球采纳,获得10
4分钟前
我是乔治发布了新的文献求助10
5分钟前
andrele发布了新的文献求助10
5分钟前
salty完成签到 ,获得积分10
6分钟前
SciGPT应助ZcLee采纳,获得10
7分钟前
ZcLee完成签到,获得积分10
7分钟前
扬大小汤完成签到,获得积分10
7分钟前
zsv996应助科研通管家采纳,获得10
7分钟前
8分钟前
茶茶完成签到,获得积分10
9分钟前
zsv996应助科研通管家采纳,获得30
9分钟前
如初完成签到 ,获得积分10
10分钟前
我是乔治发布了新的文献求助30
10分钟前
JamesPei应助lourahan采纳,获得10
10分钟前
10分钟前
lourahan发布了新的文献求助10
10分钟前
杳鸢应助欣慰外套采纳,获得30
11分钟前
我是乔治发布了新的文献求助10
12分钟前
xxxxxxh完成签到,获得积分10
12分钟前
wbs13521完成签到,获得积分10
13分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3284134
求助须知:如何正确求助?哪些是违规求助? 2921638
关于积分的说明 8406844
捐赠科研通 2593294
什么是DOI,文献DOI怎么找? 1413791
科研通“疑难数据库(出版商)”最低求助积分说明 658615
邀请新用户注册赠送积分活动 640397