Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木子发布了新的文献求助10
1秒前
1秒前
彪壮的草莓关注了科研通微信公众号
2秒前
Hanna0223关注了科研通微信公众号
2秒前
lione完成签到,获得积分10
3秒前
念初发布了新的文献求助10
3秒前
3秒前
ZhijunXiang发布了新的文献求助30
5秒前
6秒前
6秒前
鲸鱼发布了新的文献求助10
6秒前
丛玉林完成签到,获得积分10
7秒前
科研通AI6应助SEANFLY采纳,获得10
7秒前
科研通AI5应助于大本事采纳,获得10
7秒前
爬不起来发布了新的文献求助10
7秒前
ab完成签到,获得积分10
7秒前
8秒前
Orange应助wb采纳,获得10
8秒前
8秒前
万能图书馆应助xun采纳,获得30
8秒前
大个应助林周采纳,获得10
8秒前
小哈发布了新的文献求助10
8秒前
Iq完成签到,获得积分10
9秒前
嘟嘟完成签到,获得积分10
9秒前
云康肖完成签到,获得积分10
9秒前
livian完成签到,获得积分10
9秒前
热情高跟鞋完成签到,获得积分10
10秒前
NexusExplorer应助golden采纳,获得10
10秒前
Lucas应助golden采纳,获得10
10秒前
科研通AI5应助golden采纳,获得10
10秒前
小二郎应助mochi采纳,获得10
11秒前
科研通AI6应助李木子采纳,获得10
11秒前
希望天下0贩的0应助朱朱采纳,获得10
11秒前
yi111发布了新的文献求助10
12秒前
祝我每日愉快完成签到 ,获得积分10
12秒前
爆米花应助12采纳,获得10
13秒前
斯文败类应助秣旎采纳,获得10
13秒前
眯眯眼的裙子完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
美好易烟发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835