已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李子关注了科研通微信公众号
2秒前
保卫时光发布了新的文献求助50
2秒前
眼中星光发布了新的文献求助10
4秒前
4秒前
4秒前
善学以致用应助百浪多息采纳,获得10
5秒前
张达发布了新的文献求助10
5秒前
6秒前
6秒前
捏捏我的小短腿完成签到,获得积分10
8秒前
RDF发布了新的文献求助10
8秒前
9秒前
9秒前
木木夕云发布了新的文献求助10
10秒前
zhizhi完成签到,获得积分20
10秒前
yinjs158发布了新的文献求助10
10秒前
上官若男应助张达采纳,获得10
11秒前
11秒前
12秒前
文静的刺猬完成签到,获得积分20
13秒前
777567发布了新的文献求助10
14秒前
YuuuY发布了新的文献求助10
14秒前
14秒前
15秒前
快乐石头发布了新的文献求助10
15秒前
sweetrumors发布了新的文献求助10
16秒前
wen发布了新的文献求助30
16秒前
柳易槐发布了新的文献求助20
16秒前
小李子发布了新的文献求助10
16秒前
17秒前
18秒前
yourkit发布了新的文献求助30
20秒前
万能图书馆应助萝卜青菜采纳,获得30
20秒前
AS完成签到,获得积分10
21秒前
JamesPei应助松松果采纳,获得10
21秒前
科目三应助施春婷aaa采纳,获得10
21秒前
小吴完成签到,获得积分10
22秒前
qsq完成签到 ,获得积分10
22秒前
哈哈完成签到 ,获得积分10
23秒前
JamesPei应助wysci采纳,获得10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467