Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
king_creole完成签到,获得积分10
刚刚
伏笑完成签到 ,获得积分10
刚刚
shirley完成签到,获得积分10
1秒前
饱满的秋白完成签到,获得积分10
1秒前
HU完成签到,获得积分10
1秒前
SciGPT应助头真的很大采纳,获得10
1秒前
顾矜应助小伍同学采纳,获得10
1秒前
孤独的狼完成签到,获得积分10
1秒前
1秒前
打打应助潘若溪采纳,获得10
2秒前
贪玩青易关注了科研通微信公众号
3秒前
崽崽纯发布了新的文献求助10
4秒前
大虫子发布了新的文献求助10
4秒前
晴朗发布了新的文献求助10
4秒前
Anna发布了新的文献求助10
4秒前
5秒前
123完成签到 ,获得积分10
6秒前
6秒前
LewisAcid应助要减肥采纳,获得20
6秒前
6秒前
David完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
爱学习的YY完成签到 ,获得积分10
8秒前
8秒前
10秒前
龙龍泷完成签到,获得积分10
12秒前
13秒前
yao完成签到,获得积分10
13秒前
Clarence发布了新的文献求助10
13秒前
13秒前
13秒前
斯文败类应助Anna采纳,获得30
14秒前
会飞的猪qq完成签到,获得积分10
14秒前
16秒前
在水一方应助C_采纳,获得10
16秒前
16秒前
零度完成签到,获得积分10
16秒前
16秒前
弥漫的橘发布了新的文献求助10
16秒前
星辰大海应助ff采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781