Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯思发布了新的文献求助10
2秒前
3秒前
4秒前
惠惠不会完成签到,获得积分10
5秒前
英俊的铭应助大大怪采纳,获得10
5秒前
6秒前
mxm12138发布了新的文献求助10
7秒前
8秒前
qiao完成签到 ,获得积分10
8秒前
叶心发布了新的文献求助10
8秒前
8秒前
小白白完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
汉堡包应助无情平松采纳,获得10
15秒前
FashionBoy应助mxm12138采纳,获得30
15秒前
去为我我完成签到,获得积分10
17秒前
17秒前
鬲木发布了新的文献求助10
17秒前
18秒前
siren完成签到,获得积分10
19秒前
本是个江湖散人完成签到,获得积分10
22秒前
思源应助鬲木采纳,获得10
22秒前
无情平松完成签到,获得积分10
23秒前
23秒前
脑洞疼应助草上飞采纳,获得10
23秒前
小鸣完成签到 ,获得积分10
24秒前
陈苗发布了新的文献求助10
24秒前
cx完成签到 ,获得积分10
25秒前
xinxinbaby发布了新的文献求助10
26秒前
dandna完成签到 ,获得积分10
27秒前
去为我我发布了新的文献求助10
27秒前
27秒前
明明发布了新的文献求助10
27秒前
30秒前
30秒前
奥特超曼应助十七采纳,获得10
31秒前
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176