已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
岂有此李完成签到,获得积分10
3秒前
冷静访梦完成签到,获得积分10
4秒前
7秒前
hyggg发布了新的文献求助10
8秒前
展锋完成签到 ,获得积分10
12秒前
隐形曼青应助糊涂的青烟采纳,获得10
12秒前
以菱完成签到 ,获得积分10
16秒前
赘婿应助zhangfan采纳,获得10
16秒前
17秒前
apckkk完成签到 ,获得积分10
24秒前
李不斜完成签到 ,获得积分10
24秒前
24秒前
26秒前
Owen应助九色可乐采纳,获得10
28秒前
29秒前
29秒前
萨达发布了新的文献求助10
31秒前
Cecilia发布了新的文献求助10
33秒前
34秒前
dkjg完成签到 ,获得积分10
36秒前
ding应助自觉芒果采纳,获得10
37秒前
37秒前
原子发布了新的文献求助10
38秒前
深情的玉米完成签到 ,获得积分10
38秒前
小蘑菇应助zhouxiaoyang采纳,获得10
38秒前
拼搏山水发布了新的文献求助10
41秒前
三三完成签到 ,获得积分10
42秒前
LALA完成签到,获得积分10
42秒前
安详宛筠完成签到,获得积分10
46秒前
368DFS发布了新的文献求助20
47秒前
小小鱼完成签到 ,获得积分10
47秒前
安详宛筠发布了新的文献求助10
49秒前
50秒前
jiafang发布了新的文献求助30
52秒前
LHT完成签到,获得积分10
53秒前
53秒前
53秒前
冷艳的仇天完成签到,获得积分20
54秒前
zhangfan发布了新的文献求助10
57秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454643
求助须知:如何正确求助?哪些是违规求助? 4562040
关于积分的说明 14284160
捐赠科研通 4485847
什么是DOI,文献DOI怎么找? 2457056
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913