Chinese mitten crab detection and gender classification method based on GMNet-YOLOv4

模式识别(心理学) 人工智能 计算机科学 卷积神经网络 目标检测 探测器 电信
作者
Xin Chen,Yuhang Zhang,Daoliang Li,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108318-108318 被引量:6
标识
DOI:10.1016/j.compag.2023.108318
摘要

The Chinese mitten crab (Eriocheir sinensis) is a unique aquaculture species in China. The accurate detection of crab targets and gender classification is crucial in guiding biomass estimation, separate breeding based on gender, and quality grading during crab breeding. Current crab gender classification methods find addressing complex backgrounds and processing images with multiple crabs challenging. Herein, we propose a lightweight crab detection and gender classification method based on the improved YOLOv4, called GMNet-YOLOv4. First, crab images with multiple backgrounds were collected to construct crab detection and gender classification datasets. Second, the lightweight GhostNet was selected as the backbone of the original YOLOv4 to extract crab features. Subsequently, the standard convolution of the neck and head network was replaced by a depthwise separable convolution in MobileNet, which further reduces the number of parameters while maintaining accuracy. Finally, the proposed method was used to detect, localize, and classify crabs using an appropriate bounding box and class, and the outputs of the model were the bounding boxes and classes (male or female). Experiments were conducted on the crab image dataset considering backgrounds, heights, and occlusion degrees. The results demonstrated a precision of 96.75%, recall of 97.07%, F1-score of 96.90%, and mean average precision (mAP) of 97.23% on the test set. Compared with the original YOLOv4, the precision of the proposed method was improved by 2.82% and the number of parameters was reduced by 82.24%. Furthermore, compared with different object detectors such as Faster R-CNN and single shot detector, the precision of the proposed method increased by 3.95% and 2.40%, the recall increased by 0.73% and 5.13%, the F1-score increased by 2.40% and 3.01%, and the mAP increased by 1.64% and 3.01%, respectively. The experimental results confirmed that the proposed method has a low memory requirement and high detection and gender classification accuracy. Additionally, it effectively detects and classifies E. sinensis based on gender.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
woodword完成签到,获得积分10
3秒前
SciGPT应助Tuzi采纳,获得10
3秒前
娜娜完成签到,获得积分10
3秒前
3秒前
emmmm完成签到,获得积分10
3秒前
zjx完成签到 ,获得积分10
3秒前
虾球完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
小冬腊月完成签到,获得积分10
4秒前
4秒前
4秒前
hhh发布了新的文献求助10
5秒前
5秒前
精明人达发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Survive完成签到,获得积分10
6秒前
脑洞疼应助止咳宝采纳,获得10
6秒前
Desamin发布了新的文献求助10
7秒前
张国麒完成签到 ,获得积分10
7秒前
7秒前
7秒前
李爱国应助yao chen采纳,获得10
8秒前
星星发布了新的文献求助10
8秒前
Huang发布了新的文献求助10
9秒前
Huang发布了新的文献求助10
9秒前
万能图书馆应助浮浮世世采纳,获得10
9秒前
Huang发布了新的文献求助10
9秒前
Huang发布了新的文献求助10
9秒前
Huang发布了新的文献求助10
9秒前
鹿笙完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271