Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation

像素 土地覆盖 空间分析 空间相关性 计算机科学 遥感 自相关 空间生态学 图像分辨率 比例(比率) 人工智能 模式识别(心理学) 数据挖掘 地理 土地利用 地图学 数学 统计 电信 生态学 土木工程 工程类 生物
作者
Da He,Qian Shi,Jingqian Xue,Peter M. Atkinson,Xiaoping Liu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:299: 113884-113884 被引量:18
标识
DOI:10.1016/j.rse.2023.113884
摘要

Sub-pixel mapping is the prevailing approach for dealing with the mixed pixel effect in urban land use/land cover classification, by reconstructing the sub-pixel-scale distribution inside each mixed-pixel based on spatial autocorrelation. However, 1) traditional spatial autocorrelation is limited to a local window, which cannot model the teleconnection between two locations or objects that are far apart and 2) autocorrelation is based on the idea of “the more proximate, the more similar”, which relies on a distance-weight decay parameter and cannot characterize the rich variety of mutual information in spatially heterogenous areas in urban. In this research, we develop and demonstrate a learnable correlation-based sub-pixel mapping (LECOS) method. 1) We use the “mutual retrieval” mechanism of the self-attention operation to model teleconnections that enable more distant locations or objects to be mutually correlated and 2) we design a parameter-free “self-attention in self-attention” operation to learn adaptively the diverse global correlation patterns between pixel and sub-pixel. The learned spatial correlations are then used for reasoning the sub-pixel-scale distribution of each class. We validated our method on the most challenging public datasets of urban scenes, which exhibit considerable spatial heterogeneity with complex structures and broken objects. The learned building-tree, building-road and road-tree correlation patterns contributed most to the sub-pixel reconstruction result of the urban scenes, consistent with in-situ reference data. We further explored the model's explicability in a large-area of several metropolises in China, by mapping land cover in these cities at a 2 m very fine spatial resolution using 10 m Sentinel-2 input images, and found that the derived result not only revealed rich urban spatial heterogeneity, but also that the learned correlation was indicative of urban pattern dynamics, suggesting the potential for greater understanding of issues such as urban fairness, accessibility, human exposure and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无私半青发布了新的文献求助10
1秒前
PPD发布了新的文献求助30
1秒前
1秒前
桐桐应助风趣的傲之采纳,获得10
1秒前
JL完成签到,获得积分10
1秒前
Luos完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助涛1采纳,获得10
2秒前
JIANGSHUI完成签到,获得积分10
2秒前
Ava应助小巧风华采纳,获得10
2秒前
JamesPei应助lilili采纳,获得10
2秒前
隐形曼青应助dshh采纳,获得10
3秒前
金皓玄发布了新的文献求助10
4秒前
Dream点壹完成签到,获得积分10
4秒前
科研通AI5应助鲸鱼采纳,获得10
4秒前
赘婿应助小七采纳,获得10
4秒前
怕黑以筠发布了新的文献求助10
4秒前
5秒前
刘松完成签到,获得积分20
5秒前
笑点低从梦完成签到,获得积分10
5秒前
咕噜咕噜发布了新的文献求助10
6秒前
默默问芙发布了新的文献求助10
6秒前
JIANGSHUI发布了新的文献求助10
6秒前
爆米花应助123采纳,获得10
8秒前
9秒前
22222发布了新的文献求助10
9秒前
xzzt完成签到 ,获得积分10
10秒前
10秒前
eternity136发布了新的文献求助10
14秒前
wendy完成签到,获得积分10
14秒前
Lucas应助Yanan_Z采纳,获得30
14秒前
14秒前
huangqx完成签到 ,获得积分10
14秒前
完美世界应助苦力采纳,获得10
14秒前
Sherry发布了新的文献求助10
15秒前
桐桐应助scvrl采纳,获得10
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144