Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation

像素 土地覆盖 空间分析 空间相关性 计算机科学 遥感 自相关 空间生态学 图像分辨率 比例(比率) 人工智能 模式识别(心理学) 数据挖掘 地理 土地利用 地图学 数学 统计 电信 生物 工程类 土木工程 生态学
作者
Da He,Qian Shi,Jingqian Xue,Peter M. Atkinson,Xiaoping Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113884-113884 被引量:18
标识
DOI:10.1016/j.rse.2023.113884
摘要

Sub-pixel mapping is the prevailing approach for dealing with the mixed pixel effect in urban land use/land cover classification, by reconstructing the sub-pixel-scale distribution inside each mixed-pixel based on spatial autocorrelation. However, 1) traditional spatial autocorrelation is limited to a local window, which cannot model the teleconnection between two locations or objects that are far apart and 2) autocorrelation is based on the idea of “the more proximate, the more similar”, which relies on a distance-weight decay parameter and cannot characterize the rich variety of mutual information in spatially heterogenous areas in urban. In this research, we develop and demonstrate a learnable correlation-based sub-pixel mapping (LECOS) method. 1) We use the “mutual retrieval” mechanism of the self-attention operation to model teleconnections that enable more distant locations or objects to be mutually correlated and 2) we design a parameter-free “self-attention in self-attention” operation to learn adaptively the diverse global correlation patterns between pixel and sub-pixel. The learned spatial correlations are then used for reasoning the sub-pixel-scale distribution of each class. We validated our method on the most challenging public datasets of urban scenes, which exhibit considerable spatial heterogeneity with complex structures and broken objects. The learned building-tree, building-road and road-tree correlation patterns contributed most to the sub-pixel reconstruction result of the urban scenes, consistent with in-situ reference data. We further explored the model's explicability in a large-area of several metropolises in China, by mapping land cover in these cities at a 2 m very fine spatial resolution using 10 m Sentinel-2 input images, and found that the derived result not only revealed rich urban spatial heterogeneity, but also that the learned correlation was indicative of urban pattern dynamics, suggesting the potential for greater understanding of issues such as urban fairness, accessibility, human exposure and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是玥玥啊完成签到,获得积分10
刚刚
刚刚
xmy完成签到,获得积分10
2秒前
cata完成签到,获得积分10
2秒前
3秒前
LILI2完成签到 ,获得积分10
3秒前
高贵觅山完成签到,获得积分10
3秒前
黄橙子完成签到 ,获得积分10
3秒前
RR完成签到 ,获得积分10
4秒前
6秒前
领导范儿应助xmy采纳,获得10
6秒前
雨寒完成签到 ,获得积分10
6秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
6秒前
维尼发布了新的文献求助10
6秒前
chiazy完成签到,获得积分10
7秒前
都要多喝水完成签到,获得积分10
7秒前
叶y发布了新的文献求助10
7秒前
彩色完成签到,获得积分10
7秒前
gaozengxiang完成签到,获得积分10
9秒前
隔水一路秋完成签到,获得积分10
9秒前
10秒前
Ych发布了新的文献求助30
11秒前
栗子完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
xiaowang完成签到,获得积分10
13秒前
辞却发布了新的文献求助10
15秒前
15秒前
林霖完成签到 ,获得积分10
15秒前
xiaoxie完成签到 ,获得积分10
16秒前
NiNi完成签到 ,获得积分10
16秒前
Alex完成签到,获得积分10
16秒前
Wind应助维尼采纳,获得20
17秒前
罗先斗发布了新的文献求助10
18秒前
xiaowang发布了新的文献求助20
20秒前
duonicola完成签到,获得积分10
20秒前
醋酸柠檬完成签到,获得积分10
20秒前
丽丽完成签到,获得积分10
21秒前
老白完成签到,获得积分10
21秒前
Ych完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325660
求助须知:如何正确求助?哪些是违规求助? 4466066
关于积分的说明 13895295
捐赠科研通 4358363
什么是DOI,文献DOI怎么找? 2394066
邀请新用户注册赠送积分活动 1387465
关于科研通互助平台的介绍 1358348