Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation

像素 土地覆盖 空间分析 空间相关性 计算机科学 遥感 自相关 空间生态学 图像分辨率 比例(比率) 人工智能 模式识别(心理学) 数据挖掘 地理 土地利用 地图学 数学 统计 电信 生态学 土木工程 工程类 生物
作者
Da He,Qian Shi,Jingqian Xue,Peter M. Atkinson,Xiaoping Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113884-113884 被引量:18
标识
DOI:10.1016/j.rse.2023.113884
摘要

Sub-pixel mapping is the prevailing approach for dealing with the mixed pixel effect in urban land use/land cover classification, by reconstructing the sub-pixel-scale distribution inside each mixed-pixel based on spatial autocorrelation. However, 1) traditional spatial autocorrelation is limited to a local window, which cannot model the teleconnection between two locations or objects that are far apart and 2) autocorrelation is based on the idea of “the more proximate, the more similar”, which relies on a distance-weight decay parameter and cannot characterize the rich variety of mutual information in spatially heterogenous areas in urban. In this research, we develop and demonstrate a learnable correlation-based sub-pixel mapping (LECOS) method. 1) We use the “mutual retrieval” mechanism of the self-attention operation to model teleconnections that enable more distant locations or objects to be mutually correlated and 2) we design a parameter-free “self-attention in self-attention” operation to learn adaptively the diverse global correlation patterns between pixel and sub-pixel. The learned spatial correlations are then used for reasoning the sub-pixel-scale distribution of each class. We validated our method on the most challenging public datasets of urban scenes, which exhibit considerable spatial heterogeneity with complex structures and broken objects. The learned building-tree, building-road and road-tree correlation patterns contributed most to the sub-pixel reconstruction result of the urban scenes, consistent with in-situ reference data. We further explored the model's explicability in a large-area of several metropolises in China, by mapping land cover in these cities at a 2 m very fine spatial resolution using 10 m Sentinel-2 input images, and found that the derived result not only revealed rich urban spatial heterogeneity, but also that the learned correlation was indicative of urban pattern dynamics, suggesting the potential for greater understanding of issues such as urban fairness, accessibility, human exposure and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJPPPP发布了新的文献求助10
刚刚
诚心的乌冬面完成签到,获得积分10
刚刚
行路人完成签到,获得积分10
1秒前
占囧完成签到,获得积分20
2秒前
mei发布了新的文献求助10
2秒前
orixero应助pp采纳,获得10
3秒前
阿徐呀发布了新的文献求助10
3秒前
赵油油完成签到,获得积分10
3秒前
汉德萌多林完成签到,获得积分10
4秒前
4秒前
4秒前
WANG完成签到,获得积分10
4秒前
5秒前
caicai发布了新的文献求助10
5秒前
CodeCraft应助优秀的仰采纳,获得10
5秒前
慕山完成签到,获得积分10
6秒前
整齐的一手完成签到,获得积分10
7秒前
巫雁完成签到,获得积分10
7秒前
7秒前
渊山完成签到,获得积分10
8秒前
9秒前
李东秋发布了新的文献求助10
9秒前
WANG发布了新的文献求助20
10秒前
pp完成签到,获得积分10
10秒前
科目三应助DZN采纳,获得10
10秒前
10秒前
谨慎的夏完成签到,获得积分20
10秒前
10秒前
科研通AI2S应助可怜打工人采纳,获得10
11秒前
11秒前
11秒前
暴躁的黑猫完成签到,获得积分10
12秒前
丘比特应助hiadg采纳,获得10
12秒前
小狸完成签到,获得积分10
12秒前
希望天下0贩的0应助huang采纳,获得10
12秒前
12秒前
ang发布了新的文献求助10
12秒前
13秒前
小马甲应助caicai采纳,获得10
13秒前
江月林风发布了新的文献求助10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259004
求助须知:如何正确求助?哪些是违规求助? 2900665
关于积分的说明 8312000
捐赠科研通 2570002
什么是DOI,文献DOI怎么找? 1396091
科研通“疑难数据库(出版商)”最低求助积分说明 653435
邀请新用户注册赠送积分活动 631364