已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation

像素 土地覆盖 空间分析 空间相关性 计算机科学 遥感 自相关 空间生态学 图像分辨率 比例(比率) 人工智能 模式识别(心理学) 数据挖掘 地理 土地利用 地图学 数学 统计 电信 生态学 土木工程 工程类 生物
作者
Da He,Qian Shi,Jingqian Xue,Peter M. Atkinson,Xiaoping Liu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:299: 113884-113884 被引量:18
标识
DOI:10.1016/j.rse.2023.113884
摘要

Sub-pixel mapping is the prevailing approach for dealing with the mixed pixel effect in urban land use/land cover classification, by reconstructing the sub-pixel-scale distribution inside each mixed-pixel based on spatial autocorrelation. However, 1) traditional spatial autocorrelation is limited to a local window, which cannot model the teleconnection between two locations or objects that are far apart and 2) autocorrelation is based on the idea of “the more proximate, the more similar”, which relies on a distance-weight decay parameter and cannot characterize the rich variety of mutual information in spatially heterogenous areas in urban. In this research, we develop and demonstrate a learnable correlation-based sub-pixel mapping (LECOS) method. 1) We use the “mutual retrieval” mechanism of the self-attention operation to model teleconnections that enable more distant locations or objects to be mutually correlated and 2) we design a parameter-free “self-attention in self-attention” operation to learn adaptively the diverse global correlation patterns between pixel and sub-pixel. The learned spatial correlations are then used for reasoning the sub-pixel-scale distribution of each class. We validated our method on the most challenging public datasets of urban scenes, which exhibit considerable spatial heterogeneity with complex structures and broken objects. The learned building-tree, building-road and road-tree correlation patterns contributed most to the sub-pixel reconstruction result of the urban scenes, consistent with in-situ reference data. We further explored the model's explicability in a large-area of several metropolises in China, by mapping land cover in these cities at a 2 m very fine spatial resolution using 10 m Sentinel-2 input images, and found that the derived result not only revealed rich urban spatial heterogeneity, but also that the learned correlation was indicative of urban pattern dynamics, suggesting the potential for greater understanding of issues such as urban fairness, accessibility, human exposure and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千倾完成签到 ,获得积分10
4秒前
黯然完成签到 ,获得积分10
4秒前
4秒前
Carolchen发布了新的文献求助10
6秒前
研友_ZG4ml8完成签到 ,获得积分10
7秒前
苏小北完成签到 ,获得积分10
9秒前
shweah2003完成签到,获得积分0
11秒前
文静灵阳完成签到 ,获得积分10
15秒前
热心的棒棒糖完成签到 ,获得积分10
16秒前
李健应助早岁采纳,获得10
16秒前
小凯完成签到 ,获得积分10
16秒前
wch666完成签到,获得积分20
18秒前
livialiu完成签到,获得积分10
18秒前
传奇3应助luyao970131采纳,获得10
18秒前
从容甜瓜完成签到 ,获得积分10
20秒前
张静枝完成签到 ,获得积分10
22秒前
livialiu发布了新的文献求助10
22秒前
gwh完成签到 ,获得积分10
23秒前
爆米花应助read采纳,获得10
24秒前
27秒前
luster完成签到 ,获得积分10
27秒前
Milktea123完成签到,获得积分10
28秒前
悄悄拔尖儿完成签到 ,获得积分10
30秒前
飞龙在天完成签到 ,获得积分10
30秒前
Akim应助zzj-zjut采纳,获得10
33秒前
甜甜的以筠完成签到 ,获得积分10
34秒前
龙卡烧烤店完成签到,获得积分10
35秒前
wu发布了新的文献求助30
36秒前
研友_VZG7GZ应助Fiona采纳,获得30
37秒前
六尺巷完成签到,获得积分10
38秒前
嘉心糖完成签到,获得积分0
43秒前
45秒前
45秒前
47秒前
小yy完成签到 ,获得积分10
47秒前
50秒前
嘻嘻完成签到,获得积分10
50秒前
图图完成签到,获得积分10
52秒前
zzj-zjut发布了新的文献求助10
52秒前
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994745
求助须知:如何正确求助?哪些是违规求助? 3534958
关于积分的说明 11266887
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762