生物
间充质
上皮-间质转换
间充质干细胞
细胞生物学
中胚层
恶性转化
胚胎干细胞
基质
内胚层
转移
癌症研究
病理
免疫学
癌症
遗传学
医学
免疫组织化学
基因
标识
DOI:10.1016/j.semcancer.2023.10.003
摘要
Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma. At the cellular level, EMT is defined as the transformation of epithelial cells towards a mesenchymal phenotype and is marked by attenuation of expression of epithelial markers and de novo expression of mesenchymal markers. This process is induced by extracellular factors and can be reversible, resulting in mesenchymal-to-epithelial transformation (MET). It is now clear that a cell can simultaneously express properties of both epithelia and mesenchyme, and that such transitional cell-types drive tumor cell heterogeneity, an important aspect of cancer progression, development of a stem-like cell state, and drug resistance. Here we review some of the earliest studies demonstrating the existence of EMT during embryogenesis and discuss the discovery of the extracellular factors and intracellular signaling pathways that contribute to this process, with components of the TGFβ signaling superfamily playing a prominent role. We mention early controversies surrounding in vivo EMT during embryonic development and in adult diseased states, and the maturation of the field to a stage wherein targeting EMT to control disease states is an aspirational goal.
科研通智能强力驱动
Strongly Powered by AbleSci AI