Warn-on-Forecast System: From Vision to Reality

雷雨 气象学 数据同化 计算机科学 临近预报 恶劣天气 全球预报系统 龙卷风 数值天气预报 风暴 天气预报 运筹学 地理 工程类
作者
Pamela L. Heinselman,Patrick C. Burke,Louis J. Wicker,Adam J. Clark,John S. Kain,Jidong Gao,Nusrat Yussouf,Thomas A. Jones,Patrick S. Skinner,Corey K. Potvin,Katie A. Wilson,Burkely T. Gallo,Montgomery L. Flora,Joshua Martin,Gerald J. Creager,Kent H. Knopfmeier,Yunheng Wang,Brian C. Matilla,David C. Dowell,Edward R. Mansell,Brett Roberts,Kimberly A. Hoogewind,Derek R. Stratman,J.E. Castillo Guerra,Anthony E. Reinhart,Christopher A. Kerr,William J. Miller
出处
期刊:Weather and Forecasting [American Meteorological Society]
卷期号:39 (1): 75-95 被引量:2
标识
DOI:10.1175/waf-d-23-0147.1
摘要

Abstract In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of individual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade, the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the research and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction. Significance Statement The purpose of this research is to develop an experimental prediction system that forecasts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capability is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic hazard information associated with individual severe storms between the watch-to-warning time frame within the United States.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
草莓味的星星完成签到,获得积分10
1秒前
Lucas应助ZZY采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
pharrah发布了新的文献求助10
1秒前
孟寐以求发布了新的文献求助20
2秒前
喔喔喔哦wo完成签到,获得积分10
2秒前
fdawn完成签到,获得积分10
2秒前
南浔发布了新的文献求助10
3秒前
niu应助伶俐的不尤采纳,获得10
3秒前
自信书文完成签到 ,获得积分10
4秒前
4秒前
厚德载物完成签到 ,获得积分10
4秒前
lulujiang完成签到 ,获得积分10
5秒前
Akim应助体贴的无色采纳,获得10
5秒前
一个刚刚完成签到,获得积分10
5秒前
吴淑明发布了新的文献求助10
5秒前
丘比特应助xzy采纳,获得10
5秒前
wanci应助呆萌菲音采纳,获得10
6秒前
Bruce完成签到,获得积分10
6秒前
MX001完成签到,获得积分10
6秒前
7秒前
大个应助普鲁卡因采纳,获得10
7秒前
Hello应助nezhaalicia采纳,获得10
7秒前
7秒前
苏silence发布了新的文献求助10
8秒前
9秒前
肌肉猛男完成签到,获得积分10
9秒前
领导范儿应助memorise采纳,获得30
9秒前
SciGPT应助龙江游侠采纳,获得10
9秒前
火星上的西牛完成签到,获得积分10
9秒前
qwdqwd完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
明理的蜗牛完成签到,获得积分10
11秒前
pharrah完成签到,获得积分10
11秒前
Qianyun完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017