前列腺癌
医学
前列腺切除术
无线电技术
随机森林
磁共振成像
放射科
队列
放射性武器
前列腺
病变
人工智能
医学物理学
癌症
计算机科学
病理
内科学
作者
Ingeborg Berg,Timo F. W. Soeterik,E.J. Hoeven,Bart Claassen,Wyger M. Brink,D.J.H. Baas,J.P. Michiel Sedelaar,Lizette Heine,Jim P. Tol,Jochem R.N. van der Voort van Zyp,Cornelis A. T. van den Berg,Roderick C.N. van den Bergh,Jean‐Paul A. van Basten,Harm H.E. van Melick
出处
期刊:Cancers
[MDPI AG]
日期:2023-11-17
卷期号:15 (22): 5452-5452
被引量:2
标识
DOI:10.3390/cancers15225452
摘要
Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI