亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-Contrasted CT Radiomics for SAH Prognosis Prediction

医学 无线电技术 改良兰金量表 组内相关 放射科 蛛网膜下腔出血 机器学习 内科学 计算机科学 临床心理学 缺血性中风 缺血 心理测量学
作者
Dezhi Shan,Junjie Wang,Peng Qi,Jun Lü,Daming Wang
出处
期刊:Bioengineering [MDPI AG]
卷期号:10 (8): 967-967 被引量:2
标识
DOI:10.3390/bioengineering10080967
摘要

Subarachnoid hemorrhage (SAH) denotes a serious type of hemorrhagic stroke that often leads to a poor prognosis and poses a significant socioeconomic burden. Timely assessment of the prognosis of SAH patients is of paramount clinical importance for medical decision making. Currently, clinical prognosis evaluation heavily relies on patients’ clinical information, which suffers from limited accuracy. Non-contrast computed tomography (NCCT) is the primary diagnostic tool for SAH. Radiomics, an emerging technology, involves extracting quantitative radiomics features from medical images to serve as diagnostic markers. However, there is a scarcity of studies exploring the prognostic prediction of SAH using NCCT radiomics features. The objective of this study is to utilize machine learning (ML) algorithms that leverage NCCT radiomics features for the prognostic prediction of SAH. Retrospectively, we collected NCCT and clinical data of SAH patients treated at Beijing Hospital between May 2012 and November 2022. The modified Rankin Scale (mRS) was utilized to assess the prognosis of patients with SAH at the 3-month mark after the SAH event. Based on follow-up data, patients were classified into two groups: good outcome (mRS ≤ 2) and poor outcome (mRS > 2) groups. The region of interest in NCCT images was delineated using 3D Slicer software, and radiomic features were extracted. The most stable and significant radiomic features were identified using the intraclass correlation coefficient, t-test, and least absolute shrinkage and selection operator (LASSO) regression. The data were randomly divided into training and testing cohorts in a 7:3 ratio. Various ML algorithms were utilized to construct predictive models, encompassing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perceptron (MLP). Seven prediction models based on radiomic features related to the outcome of SAH patients were constructed using the training cohort. Internal validation was performed using five-fold cross-validation in the entire training cohort. The receiver operating characteristic curve, accuracy, precision, recall, and f-1 score evaluation metrics were employed to assess the performance of the classifier in the overall dataset. Furthermore, decision curve analysis was conducted to evaluate model effectiveness. The study included 105 SAH patients. A comprehensive set of 1316 radiomics characteristics were initially derived, from which 13 distinct features were chosen for the construction of the ML model. Significant differences in age were observed between patients with good and poor outcomes. Among the seven constructed models, model_SVM exhibited optimal outcomes during a five-fold cross-validation assessment, with an average area under the curve (AUC) of 0.98 (standard deviation: 0.01) and 0.88 (standard deviation: 0.08) on the training and testing cohorts, respectively. In the overall dataset, model_SVM achieved an accuracy, precision, recall, f-1 score, and AUC of 0.88, 0.84, 0.87, 0.84, and 0.82, respectively, in the testing cohort. Radiomics features associated with the outcome of SAH patients were successfully obtained, and seven ML models were constructed. Model_SVM exhibited the best predictive performance. The radiomics model has the potential to provide guidance for SAH prognosis prediction and treatment guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
爱静静应助科研通管家采纳,获得10
30秒前
爱静静应助科研通管家采纳,获得10
30秒前
爱静静应助科研通管家采纳,获得10
30秒前
中中中完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助he~tui~~采纳,获得10
4分钟前
5分钟前
he~tui~~发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
Andy_2024完成签到,获得积分10
6分钟前
Summer完成签到 ,获得积分10
6分钟前
Migue发布了新的文献求助200
7分钟前
月军完成签到,获得积分10
9分钟前
he~tui~~发布了新的文献求助10
9分钟前
10分钟前
he~tui~~完成签到,获得积分10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
麻花阳发布了新的文献求助30
10分钟前
科研通AI2S应助Migue采纳,获得10
11分钟前
麻花阳完成签到,获得积分10
11分钟前
11分钟前
11分钟前
程翠丝完成签到,获得积分10
11分钟前
Panther完成签到,获得积分10
12分钟前
12分钟前
爱静静应助科研通管家采纳,获得10
12分钟前
爱静静应助科研通管家采纳,获得10
12分钟前
12分钟前
小乙猪完成签到 ,获得积分0
13分钟前
浦东江边种树人完成签到,获得积分10
13分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158649
求助须知:如何正确求助?哪些是违规求助? 2809798
关于积分的说明 7883707
捐赠科研通 2468521
什么是DOI,文献DOI怎么找? 1314279
科研通“疑难数据库(出版商)”最低求助积分说明 630575
版权声明 601983