Automatic Modulation Classification of Frequency-Hopping Signals Using High-Dimensional Phase Diagrams

支持向量机 特征向量 调制(音乐) 计算机科学 信号(编程语言) 人工智能 模式识别(心理学) 算法 编码器 相位调制 相(物质) 物理 量子力学 声学 程序设计语言 操作系统
作者
Qibo Chen,Kun Yan,Hsiao‐Chun Wu,Shih Yu Chang,Xiao Yan,Yiyan Wu,Haonan Chang
标识
DOI:10.1109/bmsb58369.2023.10211277
摘要

Automatic modulation recognition for frequency-hopping (FH) signals remains very challenging to researchers due to the signals' time-varying spectral characteristics. In this work, a novel robust automatic modulation recognition scheme is investigated for FH signals using the phase-space topological features represented by the embedded phase diagrams. As such embedded phase diagrams are often high-dimensional, it is necessary to formulate the phase-space features as tensors. In the training process, the phase-space tensor features will be utilized to establish the regression models as linear encoders for the individual modulations. The aforementioned linear encoders are constructed using the support vector machine (SVM); the phase-space feature-tensors of the training signals of all modulations will be projected by their corresponding regression models (or linearly encoded) to produce the representative code-vectors, respectively. In the test stage, the phase-space feature-tensor produced from a test signal will be projected by each individual trained regression model (or linearly encoded) to generate the respective code-vectors. Then, the code-vectors resulting from the test stage will be compared with the representative code-vectors to find which modulation will lead to the smallest Euclidean distance in between and such a modulation will be picked as the modulation type of the test signal. Monte Carlo simulation results have demonstrated that the average recognition accuracy of our proposed new approach is more than 90% when the signal-to-noise ratio is no less than 0 dB for additive white Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ALLIN完成签到,获得积分10
刚刚
愉快鲜花完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
慕青应助TT采纳,获得10
2秒前
思源应助SMILE采纳,获得10
2秒前
耶耶发布了新的文献求助10
2秒前
2秒前
小二郎应助称心不尤采纳,获得10
3秒前
凉白开完成签到,获得积分10
3秒前
3秒前
JamesPei应助专一的书雪采纳,获得10
3秒前
3秒前
爱睡觉完成签到,获得积分10
4秒前
魁梧的冷之完成签到,获得积分10
4秒前
4秒前
耶耶耶发布了新的文献求助10
4秒前
嘟嘟嘟儿发布了新的文献求助10
5秒前
6秒前
zhouenen完成签到,获得积分10
6秒前
HJJHJH发布了新的文献求助10
6秒前
6秒前
7秒前
缓慢夜阑发布了新的文献求助10
7秒前
7秒前
无奈半仙完成签到,获得积分10
7秒前
野原x之助完成签到,获得积分10
8秒前
byy发布了新的文献求助10
8秒前
8秒前
8秒前
斯文芷荷发布了新的文献求助10
9秒前
Hello应助旺仔采纳,获得10
9秒前
一只呆发布了新的文献求助10
9秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
烟花应助爱睡觉采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552578
求助须知:如何正确求助?哪些是违规求助? 3128653
关于积分的说明 9379124
捐赠科研通 2827818
什么是DOI,文献DOI怎么找? 1554720
邀请新用户注册赠送积分活动 725544
科研通“疑难数据库(出版商)”最低求助积分说明 715000