测距
计算机科学
人工智能
可靠性(半导体)
相似性(几何)
水下
机器学习
任务(项目管理)
监督学习
样品(材料)
标记数据
数据挖掘
模式识别(心理学)
人工神经网络
工程类
电信
功率(物理)
物理
化学
系统工程
色谱法
量子力学
图像(数学)
海洋学
地质学
作者
Hao Wen,C. N. Yang,Daowei Dou,Lijun Xu,Yuchen Jiao
出处
期刊:JASA express letters
[Acoustical Society of America]
日期:2023-09-01
卷期号:3 (9)
摘要
Underwater source ranging based on Deep Learning methods demands a considerable amount of labeled data, which is costly to collect. To alleviate this challenge, semi-supervised learning of the wrapper paradigm is introduced into this task. First, the Siamese network is used to generate pseudo labels for unlabeled data to expand the labeled dataset. A new effective confidence criterion based on similarity score and similar sample distribution is proposed to evaluate the reliability of pseudo labels. Then the model can be trained more fully with an expanded dataset. Experiments on the SwellEx-96 dataset validate that this method can effectively improve prediction accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI