Normal Image Guided Segmentation Framework for Unsupervised Anomaly Detection

图像分割 人工智能 模式识别(心理学) 异常检测 计算机科学 尺度空间分割 分割 计算机视觉 图像(数学) 图像纹理 基于分割的对象分类
作者
Peng Xing,Yanpeng Sun,Dan Zeng,Zechao Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4639-4652 被引量:17
标识
DOI:10.1109/tcsvt.2023.3327448
摘要

Unsupervised anomaly detection is required to detect/segment anomalous samples/regions that deviate from the normal pattern while learning only through the normal sample category. Towards this end, this paper proposes a novel framework for anomaly detection by introducing normal images as guidance called Normal Image Guided Segmentation Framework (NIGSF). It consists of a Normal Guided Network (NGN) and a Saliency Augmentation Module (SAM). NGN constructs the contrast set, which is a candidate set for extracting normal sample features. Then, a normal feature extractor is developed to extract detailed and complete features containing normal semantic information as guidance features. Meanwhile, the guidance feature fusion module is introduced to realize normal semantic guidance in the feature space, and then the segmentation module discriminates the features that are different from the normal guidance features as anomalies. SAM aims to generate forged anomaly samples utilizing available normal samples. It introduces saliency maps and random Perlin noise to generate saliency Perlin noise maps and then to generate diverse forged anomaly samples. Extensive experiments are conducted to evaluate the performance of NIGSF on three anomaly detection benchmark datasets. The results demonstrate the effectiveness of each proposed module and the superiority of the proposed method. Specifically, NIGSF outperforms the runner-up by 5.4% in terms of anomaly segmentation AP metric.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小醒发布了新的文献求助10
刚刚
journey完成签到 ,获得积分10
刚刚
czy关注了科研通微信公众号
1秒前
乐乐应助ll采纳,获得10
1秒前
1秒前
lr123456完成签到,获得积分20
1秒前
卷卷完成签到 ,获得积分10
1秒前
bushuren发布了新的文献求助10
1秒前
结实老九发布了新的文献求助10
2秒前
宋如风发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
逍遥子0923完成签到,获得积分10
3秒前
alex发布了新的文献求助10
3秒前
3秒前
852应助小点点采纳,获得10
3秒前
安然完成签到,获得积分20
3秒前
LZL发布了新的文献求助10
4秒前
科目三应助优雅的女神采纳,获得10
5秒前
Lucas应助司空沛槐采纳,获得10
5秒前
renerxiao发布了新的文献求助10
5秒前
5秒前
幸运小狗发布了新的文献求助10
5秒前
薇笑不慌完成签到,获得积分10
5秒前
上官若男应助湉湉采纳,获得30
6秒前
6秒前
6秒前
7秒前
夏侯绮山完成签到,获得积分10
7秒前
安然发布了新的文献求助10
7秒前
Ava应助菠萝采纳,获得10
8秒前
8秒前
nian完成签到,获得积分10
8秒前
8秒前
诚c发布了新的文献求助10
8秒前
8秒前
田様应助清秀的小刺猬采纳,获得10
8秒前
yuyu发布了新的文献求助10
8秒前
Rae发布了新的文献求助10
9秒前
ymm发布了新的文献求助10
9秒前
宋如风完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473258
求助须知:如何正确求助?哪些是违规求助? 4575461
关于积分的说明 14352959
捐赠科研通 4503014
什么是DOI,文献DOI怎么找? 2467404
邀请新用户注册赠送积分活动 1455315
关于科研通互助平台的介绍 1429322