Normal Image Guided Segmentation Framework for Unsupervised Anomaly Detection

图像分割 人工智能 模式识别(心理学) 异常检测 计算机科学 尺度空间分割 分割 计算机视觉 图像(数学) 图像纹理 基于分割的对象分类
作者
Peng Xing,Yanpeng Sun,Dan Zeng,Zechao Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4639-4652 被引量:17
标识
DOI:10.1109/tcsvt.2023.3327448
摘要

Unsupervised anomaly detection is required to detect/segment anomalous samples/regions that deviate from the normal pattern while learning only through the normal sample category. Towards this end, this paper proposes a novel framework for anomaly detection by introducing normal images as guidance called Normal Image Guided Segmentation Framework (NIGSF). It consists of a Normal Guided Network (NGN) and a Saliency Augmentation Module (SAM). NGN constructs the contrast set, which is a candidate set for extracting normal sample features. Then, a normal feature extractor is developed to extract detailed and complete features containing normal semantic information as guidance features. Meanwhile, the guidance feature fusion module is introduced to realize normal semantic guidance in the feature space, and then the segmentation module discriminates the features that are different from the normal guidance features as anomalies. SAM aims to generate forged anomaly samples utilizing available normal samples. It introduces saliency maps and random Perlin noise to generate saliency Perlin noise maps and then to generate diverse forged anomaly samples. Extensive experiments are conducted to evaluate the performance of NIGSF on three anomaly detection benchmark datasets. The results demonstrate the effectiveness of each proposed module and the superiority of the proposed method. Specifically, NIGSF outperforms the runner-up by 5.4% in terms of anomaly segmentation AP metric.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林天完成签到,获得积分10
刚刚
1秒前
lllllyyyyy完成签到 ,获得积分10
1秒前
YaoHui完成签到,获得积分10
1秒前
1秒前
Tici完成签到,获得积分10
2秒前
Amy完成签到,获得积分10
2秒前
kai完成签到,获得积分10
2秒前
灰灰发布了新的文献求助10
2秒前
归海一刀完成签到,获得积分10
2秒前
三水完成签到 ,获得积分20
2秒前
3秒前
宓天问完成签到,获得积分10
4秒前
YaoHui发布了新的文献求助10
4秒前
zuoyanwin完成签到,获得积分10
5秒前
活在当下发布了新的文献求助10
5秒前
圣尊鳕幽发布了新的文献求助10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得20
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SophieLiu完成签到,获得积分10
6秒前
Orange应助科研通管家采纳,获得30
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
7秒前
RolfHoward完成签到,获得积分10
8秒前
栓Q完成签到,获得积分10
8秒前
liyiliyi117完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349