Comparison of Prognostic Models for Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

医学 接收机工作特性 逻辑回归 随机森林 蛛网膜下腔出血 梯度升压 人工智能 机器学习 改良兰金量表 曲线下面积 交替决策树 人工神经网络 精确性和召回率 决策树 内科学 计算机科学 缺血性中风 缺血 决策树学习 增量决策树
作者
Han Wang,Tomas L Bothe,Cong Deng,Shengyin Lv,Pratik H. Khedkar,Richard J. Kovacs,Andreas Patzak,Lingyun Wu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:180: e686-e699
标识
DOI:10.1016/j.wneu.2023.10.008
摘要

Controversy exists regarding the superiority of the performance of prognostic tools based on advanced machine learning (ML) algorithms for patients with aneurysmal subarachnoid hemorrhage (aSAH). However, it is unclear whether ML prognostic models will benefit patients due to the lack of a comprehensive assessment. We aimed to develop and evaluate ML models for predicting unfavorable functional outcomes for aSAH patients and identify the model with the greatest performance. In this retrospective study, a dataset of 955 patients with aSAH was used to construct and validate prognostic models for functional outcomes assessed using the modified Rankin scale during a follow-up period of 3–6 months. Clinical scores and clinical and radiological features on admission and secondary complications were used to construct models based on 5 ML algorithms (i.e., logistic regression [LR], k-nearest neighbor, extreme gradient boosting, random forest, and artificial neural network). For evaluation among the models, the area under the receiver operating characteristic curve, area under the precision-recall curve, calibration curve, and decision curve analysis were used. Composite models had significantly higher area under the receiver operating characteristic curves than did simple models in predicting unfavorable functional outcomes. Compared with other composite models (random forest and extreme gradient boosting) with good calibration, LR had the highest area under the precision-recall score and showed the greatest benefit in decision curve analysis. Of the 5 studied ML models, the conventional LR model outperformed the advanced algorithms in predicting the prognosis and could be a useful tool for health care professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助专注乐巧采纳,获得10
刚刚
自信晟睿发布了新的文献求助10
刚刚
刚刚
1秒前
七里香完成签到 ,获得积分10
1秒前
handsomecat关注了科研通微信公众号
1秒前
细心映寒完成签到 ,获得积分10
1秒前
1秒前
fff完成签到,获得积分10
1秒前
领导范儿应助MJQ采纳,获得100
1秒前
2秒前
Owen应助世界尽头采纳,获得10
2秒前
echolan发布了新的文献求助10
3秒前
SID完成签到,获得积分10
3秒前
中九完成签到 ,获得积分10
3秒前
Rrr完成签到,获得积分10
3秒前
hehuan0520完成签到,获得积分10
3秒前
3秒前
打打应助chinning采纳,获得10
3秒前
桐桐应助wangyanyan采纳,获得10
4秒前
4秒前
zzznznnn发布了新的文献求助10
4秒前
jogrgr发布了新的文献求助10
5秒前
sun发布了新的文献求助10
5秒前
布鲁鲁发布了新的文献求助10
5秒前
自信晟睿完成签到,获得积分10
5秒前
酷波er应助哒哒采纳,获得10
6秒前
6秒前
沉默乐荷完成签到,获得积分10
6秒前
rstorz应助皮尤尤采纳,获得10
6秒前
sweetbearm应助小离采纳,获得10
6秒前
何青岚关注了科研通微信公众号
7秒前
doudou完成签到,获得积分20
7秒前
李健的小迷弟应助潦草采纳,获得10
7秒前
8秒前
8秒前
8秒前
柒八染完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759