Comparison of Prognostic Models for Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

医学 接收机工作特性 逻辑回归 随机森林 蛛网膜下腔出血 梯度升压 人工智能 机器学习 改良兰金量表 曲线下面积 交替决策树 人工神经网络 精确性和召回率 决策树 内科学 计算机科学 缺血性中风 决策树学习 缺血 增量决策树
作者
Han Wang,Tomas L Bothe,Cong Deng,Shengyin Lv,Pratik H. Khedkar,Richard J. Kovacs,Andreas Patzak,Lingyun Wu
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:180: e686-e699
标识
DOI:10.1016/j.wneu.2023.10.008
摘要

Controversy exists regarding the superiority of the performance of prognostic tools based on advanced machine learning (ML) algorithms for patients with aneurysmal subarachnoid hemorrhage (aSAH). However, it is unclear whether ML prognostic models will benefit patients due to the lack of a comprehensive assessment. We aimed to develop and evaluate ML models for predicting unfavorable functional outcomes for aSAH patients and identify the model with the greatest performance. In this retrospective study, a dataset of 955 patients with aSAH was used to construct and validate prognostic models for functional outcomes assessed using the modified Rankin scale during a follow-up period of 3–6 months. Clinical scores and clinical and radiological features on admission and secondary complications were used to construct models based on 5 ML algorithms (i.e., logistic regression [LR], k-nearest neighbor, extreme gradient boosting, random forest, and artificial neural network). For evaluation among the models, the area under the receiver operating characteristic curve, area under the precision-recall curve, calibration curve, and decision curve analysis were used. Composite models had significantly higher area under the receiver operating characteristic curves than did simple models in predicting unfavorable functional outcomes. Compared with other composite models (random forest and extreme gradient boosting) with good calibration, LR had the highest area under the precision-recall score and showed the greatest benefit in decision curve analysis. Of the 5 studied ML models, the conventional LR model outperformed the advanced algorithms in predicting the prognosis and could be a useful tool for health care professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瑶发布了新的文献求助10
2秒前
2秒前
Ava应助仁爱太阳采纳,获得10
2秒前
4秒前
4秒前
nnns发布了新的文献求助10
6秒前
搞一篇SCI发布了新的文献求助10
6秒前
从容谷菱完成签到,获得积分10
6秒前
helen发布了新的文献求助10
7秒前
Feifei133发布了新的文献求助30
8秒前
10秒前
水论文的云宝黛西关注了科研通微信公众号
11秒前
12秒前
尖尖发布了新的文献求助10
12秒前
Lzt关闭了Lzt文献求助
14秒前
搞一篇SCI完成签到,获得积分10
15秒前
16秒前
AswinnLyu发布了新的文献求助10
16秒前
16秒前
18秒前
yue957完成签到 ,获得积分10
19秒前
19秒前
尖尖完成签到,获得积分10
21秒前
向北游发布了新的文献求助10
21秒前
深情安青应助Mayday采纳,获得10
21秒前
可可完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
24秒前
Hello应助朱zz采纳,获得10
24秒前
24秒前
许熙完成签到,获得积分10
24秒前
大气的fgyyhjj完成签到 ,获得积分10
25秒前
东风完成签到,获得积分10
25秒前
小唐发布了新的文献求助10
26秒前
酷波er应助loong采纳,获得10
30秒前
31秒前
32秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341