Comparison of Prognostic Models for Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

医学 接收机工作特性 逻辑回归 随机森林 蛛网膜下腔出血 梯度升压 人工智能 机器学习 改良兰金量表 曲线下面积 交替决策树 人工神经网络 精确性和召回率 决策树 内科学 计算机科学 缺血性中风 决策树学习 缺血 增量决策树
作者
Han Wang,Tomas L Bothe,Cong Deng,Shengyin Lv,Pratik H. Khedkar,Richard J. Kovacs,Andreas Patzak,Lingyun Wu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:180: e686-e699
标识
DOI:10.1016/j.wneu.2023.10.008
摘要

Controversy exists regarding the superiority of the performance of prognostic tools based on advanced machine learning (ML) algorithms for patients with aneurysmal subarachnoid hemorrhage (aSAH). However, it is unclear whether ML prognostic models will benefit patients due to the lack of a comprehensive assessment. We aimed to develop and evaluate ML models for predicting unfavorable functional outcomes for aSAH patients and identify the model with the greatest performance. In this retrospective study, a dataset of 955 patients with aSAH was used to construct and validate prognostic models for functional outcomes assessed using the modified Rankin scale during a follow-up period of 3–6 months. Clinical scores and clinical and radiological features on admission and secondary complications were used to construct models based on 5 ML algorithms (i.e., logistic regression [LR], k-nearest neighbor, extreme gradient boosting, random forest, and artificial neural network). For evaluation among the models, the area under the receiver operating characteristic curve, area under the precision-recall curve, calibration curve, and decision curve analysis were used. Composite models had significantly higher area under the receiver operating characteristic curves than did simple models in predicting unfavorable functional outcomes. Compared with other composite models (random forest and extreme gradient boosting) with good calibration, LR had the highest area under the precision-recall score and showed the greatest benefit in decision curve analysis. Of the 5 studied ML models, the conventional LR model outperformed the advanced algorithms in predicting the prognosis and could be a useful tool for health care professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助hang采纳,获得10
1秒前
1秒前
小马甲应助任性的觅海采纳,获得10
1秒前
彩色觅荷发布了新的文献求助20
2秒前
可爱的函函应助眼角流星采纳,获得10
2秒前
3秒前
zxt完成签到,获得积分10
4秒前
毛豆应助CKK采纳,获得10
5秒前
hang完成签到,获得积分20
5秒前
gugu发布了新的文献求助10
6秒前
8秒前
根决发布了新的文献求助10
8秒前
小仙女完成签到,获得积分10
9秒前
嗯哼应助hkh采纳,获得10
9秒前
科研通AI2S应助Dreamer0422采纳,获得30
10秒前
10秒前
一一完成签到 ,获得积分10
10秒前
bread发布了新的文献求助10
11秒前
科研通AI2S应助小广采纳,获得10
12秒前
Alex完成签到,获得积分10
12秒前
踏实语蓉发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
传奇3应助15采纳,获得10
17秒前
于于小鱼9完成签到,获得积分10
17秒前
爱听歌的钢铁侠完成签到,获得积分10
19秒前
何111完成签到,获得积分10
19秒前
科研小帅发布了新的文献求助10
19秒前
眼角流星发布了新的文献求助10
21秒前
rdx发布了新的文献求助10
21秒前
稳稳完成签到,获得积分10
21秒前
在水一方应助根决采纳,获得10
22秒前
23秒前
28秒前
15发布了新的文献求助10
29秒前
心灵美的茈关注了科研通微信公众号
30秒前
所所应助迷人的数据线采纳,获得10
34秒前
35秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212221
求助须知:如何正确求助?哪些是违规求助? 2861110
关于积分的说明 8127314
捐赠科研通 2527034
什么是DOI,文献DOI怎么找? 1360646
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615633