Intrusion detection for Industrial Internet of Things based on deep learning

计算机科学 入侵检测系统 冗余(工程) 数据挖掘 人工智能 水准点(测量) 聚类分析 机器学习 人工神经网络 模式识别(心理学) 大地测量学 地理 操作系统
作者
Yaoyao Lu,Senchun Chai,Yuhan Suo,Fenxi Yao,Chen Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:564: 126886-126886 被引量:12
标识
DOI:10.1016/j.neucom.2023.126886
摘要

Intrusion detection technology can actively detect abnormal behaviors in the network and is important to the security of Industrial Internet of Things (IIOT). However, there are some issues with the current intrusion detection technology for IIOT, such as extreme imbalance in the number of samples of different classes in the dataset, redundant and meaningless features in the samples, and the inability of traditional intrusion detection methods to meet the requirements of detection accuracy in the increasingly complex IIOT. In view of the extreme imbalance of classes, this paper applies the hierarchical clustering algorithm to the under-sampling technology, which reduces the number of majority samples while reducing the loss of information of majority samples, and solves the problem of missing detection and false detection of minority samples caused by sample imbalance. In order to avoid feature redundancy and interference, this paper proposes an optimal feature selection algorithm based on greedy thought. This algorithm can obtain the optimal feature subset of each type of data in the data set, thus eliminating redundant and interfering features. Aiming at the problem of insufficient detection ability of traditional detection methods, this paper proposes a deep neural network intrusion detection model based on the parallel connection of global and local subnetworks. This model obtains the overall benchmark detection of the dataset through the deep neural network, and then strengthens the detection effect of each subclass through the parallel connection of subnetworks, greatly improving the performance of the intrusion detection algorithm. The experimental results show that the method described in this paper can improve the intrusion detection for IIOT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助微笑驳采纳,获得10
1秒前
华仔应助Mhj13810采纳,获得10
3秒前
3秒前
运医瘦瘦花生完成签到,获得积分10
6秒前
Jiangnj发布了新的文献求助30
6秒前
8秒前
令狐冲完成签到,获得积分10
9秒前
orixero应助最棒哒采纳,获得10
10秒前
taotao完成签到,获得积分10
11秒前
11秒前
11秒前
靓丽初蓝完成签到,获得积分20
12秒前
13秒前
暴躁的从露关注了科研通微信公众号
14秒前
BlankSpace完成签到,获得积分10
14秒前
15秒前
Aimee发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
zfl完成签到,获得积分10
18秒前
18秒前
NJ发布了新的文献求助10
19秒前
XL发布了新的文献求助10
20秒前
21秒前
ya发布了新的文献求助10
21秒前
一二三发布了新的文献求助10
22秒前
温婉的怀寒完成签到,获得积分10
22秒前
最棒哒发布了新的文献求助10
23秒前
gs完成签到,获得积分10
23秒前
wanci发布了新的文献求助10
23秒前
劲秉应助笑点低的怀莲采纳,获得10
24秒前
26秒前
李爱国应助xianxian采纳,获得10
27秒前
田様应助xianxian采纳,获得10
27秒前
28秒前
Aimee完成签到,获得积分10
29秒前
30秒前
顺心蜜粉应助shadow采纳,获得10
30秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214498
求助须知:如何正确求助?哪些是违规求助? 2863083
关于积分的说明 8137257
捐赠科研通 2529341
什么是DOI,文献DOI怎么找? 1363623
科研通“疑难数据库(出版商)”最低求助积分说明 643860
邀请新用户注册赠送积分活动 616394