Intrusion detection for Industrial Internet of Things based on deep learning

计算机科学 入侵检测系统 冗余(工程) 数据挖掘 人工智能 水准点(测量) 聚类分析 机器学习 人工神经网络 模式识别(心理学) 大地测量学 操作系统 地理
作者
Yaoyao Lu,Senchun Chai,Yuhan Suo,Fenxi Yao,Chen Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:564: 126886-126886 被引量:12
标识
DOI:10.1016/j.neucom.2023.126886
摘要

Intrusion detection technology can actively detect abnormal behaviors in the network and is important to the security of Industrial Internet of Things (IIOT). However, there are some issues with the current intrusion detection technology for IIOT, such as extreme imbalance in the number of samples of different classes in the dataset, redundant and meaningless features in the samples, and the inability of traditional intrusion detection methods to meet the requirements of detection accuracy in the increasingly complex IIOT. In view of the extreme imbalance of classes, this paper applies the hierarchical clustering algorithm to the under-sampling technology, which reduces the number of majority samples while reducing the loss of information of majority samples, and solves the problem of missing detection and false detection of minority samples caused by sample imbalance. In order to avoid feature redundancy and interference, this paper proposes an optimal feature selection algorithm based on greedy thought. This algorithm can obtain the optimal feature subset of each type of data in the data set, thus eliminating redundant and interfering features. Aiming at the problem of insufficient detection ability of traditional detection methods, this paper proposes a deep neural network intrusion detection model based on the parallel connection of global and local subnetworks. This model obtains the overall benchmark detection of the dataset through the deep neural network, and then strengthens the detection effect of each subclass through the parallel connection of subnetworks, greatly improving the performance of the intrusion detection algorithm. The experimental results show that the method described in this paper can improve the intrusion detection for IIOT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Darling发布了新的文献求助10
1秒前
科目三应助Lidanni采纳,获得10
1秒前
大模型应助甜甜的又柔采纳,获得10
2秒前
3秒前
pyp发布了新的文献求助10
3秒前
如风随水发布了新的文献求助10
3秒前
3秒前
丘比特应助tf采纳,获得10
4秒前
李鸣笛发布了新的文献求助10
5秒前
5秒前
演员的太阳完成签到,获得积分10
7秒前
知来者完成签到,获得积分10
7秒前
8秒前
8秒前
Twonej举报哦萨尔求助涉嫌违规
9秒前
七月流火应助明亮冬萱采纳,获得10
9秒前
9秒前
Mockingjay完成签到,获得积分10
9秒前
10秒前
Loki完成签到,获得积分10
11秒前
王豆豆发布了新的文献求助10
11秒前
缥缈书本完成签到 ,获得积分10
11秒前
Thhhh发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
完美世界应助长情胡萝卜采纳,获得10
13秒前
Lignin发布了新的文献求助10
13秒前
14秒前
spy54180完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
荷塘月色完成签到,获得积分10
17秒前
领导范儿应助粗暴的背包采纳,获得10
17秒前
可爱的函函应助zzz采纳,获得10
18秒前
Gzl完成签到 ,获得积分10
18秒前
Yuki完成签到 ,获得积分10
19秒前
19秒前
Tomice发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736800
求助须知:如何正确求助?哪些是违规求助? 5368437
关于积分的说明 15334001
捐赠科研通 4880560
什么是DOI,文献DOI怎么找? 2622896
邀请新用户注册赠送积分活动 1571792
关于科研通互助平台的介绍 1528628