Intrusion detection for Industrial Internet of Things based on deep learning

计算机科学 入侵检测系统 冗余(工程) 数据挖掘 人工智能 水准点(测量) 聚类分析 机器学习 人工神经网络 模式识别(心理学) 大地测量学 地理 操作系统
作者
Yaoyao Lu,Senchun Chai,Yuhan Suo,Fenxi Yao,Chen Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:564: 126886-126886 被引量:12
标识
DOI:10.1016/j.neucom.2023.126886
摘要

Intrusion detection technology can actively detect abnormal behaviors in the network and is important to the security of Industrial Internet of Things (IIOT). However, there are some issues with the current intrusion detection technology for IIOT, such as extreme imbalance in the number of samples of different classes in the dataset, redundant and meaningless features in the samples, and the inability of traditional intrusion detection methods to meet the requirements of detection accuracy in the increasingly complex IIOT. In view of the extreme imbalance of classes, this paper applies the hierarchical clustering algorithm to the under-sampling technology, which reduces the number of majority samples while reducing the loss of information of majority samples, and solves the problem of missing detection and false detection of minority samples caused by sample imbalance. In order to avoid feature redundancy and interference, this paper proposes an optimal feature selection algorithm based on greedy thought. This algorithm can obtain the optimal feature subset of each type of data in the data set, thus eliminating redundant and interfering features. Aiming at the problem of insufficient detection ability of traditional detection methods, this paper proposes a deep neural network intrusion detection model based on the parallel connection of global and local subnetworks. This model obtains the overall benchmark detection of the dataset through the deep neural network, and then strengthens the detection effect of each subclass through the parallel connection of subnetworks, greatly improving the performance of the intrusion detection algorithm. The experimental results show that the method described in this paper can improve the intrusion detection for IIOT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘如松完成签到,获得积分10
1秒前
万能图书馆应助文献直达采纳,获得10
1秒前
高兴凡儿发布了新的文献求助10
2秒前
小青蛙OA发布了新的文献求助10
3秒前
Wang完成签到,获得积分10
3秒前
周舟完成签到,获得积分10
4秒前
Yu完成签到 ,获得积分10
7秒前
7秒前
沧笙踏歌发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
科目三应助高兴凡儿采纳,获得10
11秒前
雪白的巧凡完成签到,获得积分10
12秒前
13秒前
123321发布了新的文献求助10
13秒前
14秒前
CipherSage应助搞怪芷珍采纳,获得10
14秒前
lilei完成签到,获得积分20
14秒前
15秒前
乐观寄真发布了新的文献求助10
15秒前
充电宝应助直率芮采纳,获得10
15秒前
16秒前
仁爱的伯云发布了新的文献求助100
17秒前
18秒前
无花果应助hhhhhh采纳,获得10
18秒前
乐乐应助王叮叮采纳,获得10
18秒前
今夜有雨完成签到 ,获得积分10
20秒前
20秒前
Fa完成签到,获得积分10
21秒前
23秒前
23秒前
嘀嘀嘀发布了新的文献求助10
23秒前
23秒前
Charety发布了新的文献求助10
24秒前
24秒前
彭院士发布了新的文献求助20
26秒前
善学以致用应助嘀嘀嘀采纳,获得10
26秒前
有有发布了新的文献求助10
27秒前
DDd发布了新的文献求助20
27秒前
numagok完成签到,获得积分10
28秒前
cmq完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931