亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intrusion detection for Industrial Internet of Things based on deep learning

计算机科学 入侵检测系统 冗余(工程) 数据挖掘 人工智能 水准点(测量) 聚类分析 机器学习 人工神经网络 模式识别(心理学) 大地测量学 地理 操作系统
作者
Yaoyao Lu,Senchun Chai,Yuhan Suo,Fenxi Yao,Chen Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:564: 126886-126886 被引量:12
标识
DOI:10.1016/j.neucom.2023.126886
摘要

Intrusion detection technology can actively detect abnormal behaviors in the network and is important to the security of Industrial Internet of Things (IIOT). However, there are some issues with the current intrusion detection technology for IIOT, such as extreme imbalance in the number of samples of different classes in the dataset, redundant and meaningless features in the samples, and the inability of traditional intrusion detection methods to meet the requirements of detection accuracy in the increasingly complex IIOT. In view of the extreme imbalance of classes, this paper applies the hierarchical clustering algorithm to the under-sampling technology, which reduces the number of majority samples while reducing the loss of information of majority samples, and solves the problem of missing detection and false detection of minority samples caused by sample imbalance. In order to avoid feature redundancy and interference, this paper proposes an optimal feature selection algorithm based on greedy thought. This algorithm can obtain the optimal feature subset of each type of data in the data set, thus eliminating redundant and interfering features. Aiming at the problem of insufficient detection ability of traditional detection methods, this paper proposes a deep neural network intrusion detection model based on the parallel connection of global and local subnetworks. This model obtains the overall benchmark detection of the dataset through the deep neural network, and then strengthens the detection effect of each subclass through the parallel connection of subnetworks, greatly improving the performance of the intrusion detection algorithm. The experimental results show that the method described in this paper can improve the intrusion detection for IIOT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiwei应助nnc采纳,获得50
4秒前
nnc完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助wuran采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
嘻嘻完成签到,获得积分10
1分钟前
Orange应助3927456843采纳,获得10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
1分钟前
小蘑菇应助LeezZZZ采纳,获得10
2分钟前
3927456843发布了新的文献求助10
2分钟前
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
3927456843完成签到,获得积分10
2分钟前
Lucas应助梦想家采纳,获得10
2分钟前
科研通AI6应助LeezZZZ采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
梦想家发布了新的文献求助10
3分钟前
熊啊发布了新的文献求助10
4分钟前
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
小周完成签到 ,获得积分10
4分钟前
5分钟前
梦想家完成签到,获得积分10
5分钟前
5分钟前
story发布了新的文献求助10
5分钟前
科研通AI2S应助story采纳,获得10
6分钟前
6分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
熊啊发布了新的文献求助10
6分钟前
Kevin完成签到,获得积分10
7分钟前
sci2025opt完成签到 ,获得积分10
7分钟前
7分钟前
李健应助鸡蛋黄采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877