背景(考古学)
相关性(法律)
活性成分
药物发现
药物
计算机科学
药学
制药技术
生化工程
人工智能
纳米技术
数据科学
机器学习
药品
化学
医学
材料科学
药理学
工程类
生物
古生物学
法学
生物化学
色谱法
政治学
作者
Carolina von Eßen,David Luedeker
标识
DOI:10.1016/j.drudis.2023.103763
摘要
Pharmaceutical co-crystals represent a growing class of crystal forms in the context of pharmaceutical science. They are attractive to pharmaceutical scientists because they significantly expand the number of crystal forms that exist for an active pharmaceutical ingredient and can lead to improvements in physicochemical properties of clinical relevance. At the same time, machine learning is finding its way into all areas of drug discovery and delivers impressive results. In this review, we attempt to provide an overview of machine learning, deep learning and network-based recommendation approaches applied to pharmaceutical co-crystallization. We also present crystal structure prediction as an alternative to machine learning approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI