Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121442-121442 被引量:5
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路乌发布了新的文献求助10
1秒前
1秒前
从容藏花完成签到,获得积分10
2秒前
tonstark发布了新的文献求助10
3秒前
advance完成签到,获得积分0
3秒前
3秒前
科研通AI2S应助小巧问芙采纳,获得10
4秒前
4秒前
5秒前
5秒前
黎松发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
可达燊发布了新的文献求助10
6秒前
Akim应助重要的平灵采纳,获得10
6秒前
衡阳雁发布了新的文献求助10
6秒前
7秒前
7秒前
半颗糖完成签到,获得积分10
7秒前
Johnyang完成签到,获得积分10
7秒前
天天快乐应助hongping采纳,获得10
8秒前
8秒前
幽默不评发布了新的文献求助10
9秒前
月亮完成签到,获得积分10
9秒前
9秒前
赘婿应助三木采纳,获得10
9秒前
李健的小迷弟应助孙佳美采纳,获得10
9秒前
市不辣发布了新的文献求助10
9秒前
田様应助可达燊采纳,获得10
10秒前
Kane发布了新的文献求助10
10秒前
10秒前
10秒前
Johnyang发布了新的文献求助30
10秒前
chencai发布了新的文献求助10
11秒前
思源应助taoatao采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
吴迪发布了新的文献求助10
12秒前
eawea发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478