Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121442-121442 被引量:5
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
IAN关闭了IAN文献求助
2秒前
Lucas应助茉莉采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
天天快乐应助陈陈采纳,获得10
5秒前
5秒前
wxr发布了新的文献求助10
7秒前
那一年盛夏完成签到,获得积分10
7秒前
Owen应助勤恳冰淇淋采纳,获得30
7秒前
沙xiaohan发布了新的文献求助10
8秒前
8秒前
HappyPlato完成签到,获得积分10
9秒前
范达克完成签到 ,获得积分10
10秒前
556发布了新的文献求助10
10秒前
Orange应助韦娜采纳,获得10
10秒前
10秒前
小二完成签到,获得积分10
11秒前
支半雪发布了新的文献求助10
11秒前
Owen应助心灵美的大地采纳,获得10
12秒前
12秒前
情怀应助琪琪扬扬采纳,获得10
13秒前
13秒前
14秒前
天天快乐应助刘优秀采纳,获得10
14秒前
15秒前
15秒前
17秒前
QQ完成签到,获得积分10
18秒前
20秒前
20秒前
20秒前
科研通AI6应助皮飞111采纳,获得10
20秒前
21秒前
22秒前
徐徐徐徐徐徐徐完成签到,获得积分20
22秒前
houyan发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604