Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121442-121442 被引量:5
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysk发布了新的文献求助10
1秒前
小樱颖子完成签到 ,获得积分10
3秒前
小二郎应助苗条傲蕾采纳,获得10
3秒前
3秒前
英姑应助班里采纳,获得10
3秒前
我下载不了论文啊完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
陈雨发布了新的文献求助10
10秒前
qiuli完成签到,获得积分10
10秒前
酷波er应助Kilig采纳,获得30
10秒前
无极微光应助废寝忘食采纳,获得40
11秒前
14秒前
14秒前
诗亭完成签到,获得积分10
14秒前
刘英岑完成签到,获得积分10
17秒前
王誉霖完成签到,获得积分10
17秒前
17秒前
阳光he完成签到,获得积分10
18秒前
班里发布了新的文献求助10
18秒前
啦啦啦123发布了新的文献求助10
19秒前
废寝忘食完成签到,获得积分10
19秒前
dandan完成签到,获得积分10
20秒前
22秒前
24秒前
啦啦啦123完成签到,获得积分10
24秒前
冷傲迎梦完成签到,获得积分20
27秒前
27秒前
ysk完成签到,获得积分10
28秒前
王辰宁完成签到,获得积分10
29秒前
小树完成签到 ,获得积分10
29秒前
gomm完成签到,获得积分10
29秒前
哈哈哈完成签到,获得积分10
30秒前
Rae完成签到,获得积分10
31秒前
冷傲迎梦发布了新的文献求助10
31秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
迷路的糜完成签到,获得积分10
35秒前
Owen应助米热采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365