Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121442-121442 被引量:5
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Larson完成签到,获得积分10
刚刚
笨笨三颜完成签到,获得积分10
刚刚
NNUsusan完成签到,获得积分10
2秒前
2秒前
ccm应助黄青青采纳,获得10
2秒前
Leoitch发布了新的文献求助10
2秒前
新嗨完成签到,获得积分10
3秒前
时尚听筠发布了新的文献求助30
3秒前
斯文败类应助jjy采纳,获得30
3秒前
赘婿应助四代火影采纳,获得10
4秒前
Xxxzzq完成签到,获得积分10
5秒前
科研通AI6应助李存采纳,获得10
7秒前
7秒前
传奇3应助哎呦你干嘛采纳,获得10
8秒前
8秒前
10秒前
11秒前
zui发布了新的文献求助10
12秒前
浮游应助Luhan采纳,获得10
14秒前
张文博发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
热心子轩应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
阿瓦达啃大瓜完成签到,获得积分10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
17秒前
微尘之末发布了新的文献求助10
18秒前
甜蜜屁池完成签到,获得积分10
19秒前
mly发布了新的文献求助10
19秒前
tyy完成签到,获得积分10
20秒前
lalala完成签到 ,获得积分10
23秒前
大黄黄发布了新的文献求助100
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586078
求助须知:如何正确求助?哪些是违规求助? 4002708
关于积分的说明 12390961
捐赠科研通 3678812
什么是DOI,文献DOI怎么找? 2027659
邀请新用户注册赠送积分活动 1061125
科研通“疑难数据库(出版商)”最低求助积分说明 947484