Work like a doctor: Unifying scan localizer and dynamic generator for automated computed tomography report generation

计算机科学 发电机(电路理论) 人工智能 计算机断层摄影术 任务(项目管理) 模式识别(心理学) 计算机视觉 放射科 医学 功率(物理) 物理 管理 量子力学 经济
作者
Yuhao Tang,Haichen Yang,Liyan Zhang,Ye Yuan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121442-121442 被引量:5
标识
DOI:10.1016/j.eswa.2023.121442
摘要

Computed Tomography Report Generation(CTRG) aims to generate medical reports towards a series of radiological images, which is an advancement of the conventional X-ray report generation (generating one medical description only based on a single X-ray snapshot). Beyond the difficulties faced in the traditional task, CTRG requires the model to filter out the lesion regions from sequential scans, producing a fine-grained report that conforms to medical logic and common sense. Limited to available datasets, there are few methods trying to tackle this task. Besides, although densely aggregating sequential features may be beneficial, it introduces extra noise. Moreover, radiology reports are long narratives composed of abnormal descriptions and template sentences, but most studies ignore this hierarchical nature and generate the entire reports uniformly. This paper aims to bridge the gap from three distinct perspectives: first, we develop two large-scale clinical datasets termed CTRG-Brain-263K and CTRG-Chest-548K, which contain 263670 brain CT scans and 548696 chest CT scans with authoritative diagnosis reports, respectively. Second, we design a self-attention-based Scan Localizer(SL) that captures a representation most reflective of the lesion area. And a reconstruction loss is introduced to minimize the distance between focused and original scans. Finally, we propose a Dynamic Generator(DG) that decouples the decoder into abnormal and template branches, with produced proposals dynamically aggregated for the final generation. Experimental results confirm the proposed SL-DG outperforms existing methods, i.e., about +5.2% and +0.4% CIDEr points on CTRG-Brain-263K and CTRG-Chest-548K, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程程完成签到,获得积分10
刚刚
多啦a萌完成签到,获得积分10
刚刚
1秒前
鑫鑫子发布了新的文献求助10
1秒前
saluo完成签到,获得积分10
1秒前
ccshi完成签到,获得积分10
2秒前
莲枳榴莲发布了新的文献求助10
2秒前
AprilLeung完成签到 ,获得积分10
2秒前
刘小蕊发布了新的文献求助10
3秒前
你长得很下饭所以完成签到,获得积分10
4秒前
王多鱼完成签到,获得积分10
4秒前
道以文完成签到,获得积分10
5秒前
无奈的若风完成签到,获得积分10
5秒前
5秒前
追寻的水之完成签到,获得积分10
5秒前
SciGPT应助VTMS采纳,获得10
5秒前
沉默芸发布了新的文献求助10
6秒前
7秒前
跳跃的安阳完成签到,获得积分10
7秒前
8秒前
Lermta完成签到,获得积分10
8秒前
8秒前
李雷完成签到 ,获得积分10
8秒前
9秒前
xingchangrui发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
乐悠悠完成签到 ,获得积分10
12秒前
大王最厉害啦完成签到,获得积分10
12秒前
12秒前
ARNAMO完成签到,获得积分10
12秒前
鑫鑫子完成签到 ,获得积分10
13秒前
13秒前
酷波er应助曾经的便当采纳,获得10
13秒前
14秒前
14秒前
冷傲的道罡完成签到,获得积分10
15秒前
隐形曼青应助如意的芙采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396402
求助须知:如何正确求助?哪些是违规求助? 4516808
关于积分的说明 14061325
捐赠科研通 4428678
什么是DOI,文献DOI怎么找? 2432127
邀请新用户注册赠送积分活动 1424444
关于科研通互助平台的介绍 1403588