可解释性
概化理论
结直肠癌
医学
微卫星不稳定性
深度学习
计算机科学
人工智能
肿瘤科
内科学
癌症
生物
基因
等位基因
统计
生物化学
数学
微卫星
作者
Sophia J. Wagner,Daniel Reisenbüchler,Nicholas P. West,J. Niehues,Jiefu Zhu,Sebastian Foersch,Gregory P. Veldhuizen,Philip Quirke,Heike I. Grabsch,Piet A. van den Brandt,Gordon Hutchins,Susan D. Richman,Tanwei Yuan,Rupert Langer,Josien C.A. Jenniskens,Kelly Offermans,Wolfram Mueller,Richard Gray,Stephen B. Gruber,Joel K. Greenson
出处
期刊:Cancer Cell
[Cell Press]
日期:2023-08-30
卷期号:41 (9): 1650-1661.e4
被引量:101
标识
DOI:10.1016/j.ccell.2023.08.002
摘要
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI