清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning‐based ultra‐fast identification of Raman spectra with low signal‐to‐noise ratio

拉曼光谱 人工神经网络 谱线 人工智能 噪音(视频) 鉴定(生物学) 计算机科学 模式识别(心理学) 信号(编程语言) 信噪比(成像) 存储单元 生物系统 分析化学(期刊) 材料科学 化学 光学 物理 电信 工程类 电气工程 晶体管 色谱法 电压 生物 植物 程序设计语言 图像(数学) 天文
作者
Kunxiang Liu,Fuyuan Chen,Lindong Shang,Yuntong Wang,Hao Peng,Bo Liu,Bei Li
出处
期刊:Journal of Biophotonics [Wiley]
被引量:1
标识
DOI:10.1002/jbio.202300270
摘要

Ensuring the correct use of cell lines is crucial to obtaining reliable experimental results and avoiding unnecessary waste of resources. Raman spectroscopy has been confirmed to be able to identify cell lines, but the collection time is usually 10-30 s. In this study, we acquired Raman spectra of five cell lines with integration times of 0.1 and 8 s, respectively, and the average accuracy of using long-short memory neural network to identify the spectra of 0.1 s was 95%, and the average accuracy of identifying the spectra of 8 s was 99.8%. At the same time, we performed data enhancement of 0.1 s spectral data by real-valued non-volume preserving method, and the recognition average accuracy of long-short memory neural networks recognition of the enhanced spectral data was improved to 96.2%. With this method, we shorten the acquisition time of Raman spectra to 1/80 of the original one, which greatly improves the efficiency of cell identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
hhuajw完成签到,获得积分10
19秒前
zzz发布了新的文献求助10
21秒前
和气生财君完成签到 ,获得积分10
55秒前
财路通八方完成签到 ,获得积分10
1分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
3分钟前
123发布了新的文献求助10
3分钟前
胡菲诺发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Jenny完成签到 ,获得积分10
4分钟前
123关闭了123文献求助
4分钟前
fanniezhao完成签到,获得积分20
4分钟前
QCB完成签到 ,获得积分10
4分钟前
加菲丰丰应助fanniezhao采纳,获得30
4分钟前
123发布了新的文献求助10
4分钟前
科研通AI5应助123采纳,获得10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得150
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得150
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Fairy完成签到,获得积分10
7分钟前
Frank完成签到,获得积分10
7分钟前
火星的雪完成签到 ,获得积分0
7分钟前
脑洞疼应助xuan2022采纳,获得10
7分钟前
7分钟前
Kevin发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
白面包不吃鱼完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
ddd发布了新的文献求助10
8分钟前
Ji发布了新的文献求助30
8分钟前
月军完成签到 ,获得积分10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187234
求助须知:如何正确求助?哪些是违规求助? 4372086
关于积分的说明 13612892
捐赠科研通 4225047
什么是DOI,文献DOI怎么找? 2317321
邀请新用户注册赠送积分活动 1315994
关于科研通互助平台的介绍 1265461