清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Face2Nodes: Learning facial expression representations with relation-aware dynamic graph convolution networks

计算机科学 模式识别(心理学) 嵌入 人工智能 图形 卷积神经网络 判别式 图嵌入 特征学习 深度学习 面部表情 卷积(计算机科学) 理论计算机科学 人工神经网络
作者
Fan Jiang,Qionghao Huang,Xiaoyong Mei,Quanlong Guan,Yaxin Tu,Weiqi Luo,Changqin Huang
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119640-119640 被引量:5
标识
DOI:10.1016/j.ins.2023.119640
摘要

Deep convolutional neural networks (CNNs) have become the standard model architecture for facial expression recognition (FER). However, CNN-based models struggle to capture the structural correlations between different local regions in a face image. Recent methods based on Vision Transformer (ViT) have been introduced to capture long-range dependencies among local regions. Nonetheless, ViT-based approaches are vulnerable to facial regions unrelated to expressions and may learn redundant correlation representations due to their self-attention mechanism. To address these issues, we propose a novel graph-based model called Face2Nodes, which can flexibly learn the graph representations of facial expressions without requiring additional auxiliary facial information such as landmarks. Our Face2Nodes consists of two key components: a multi-scale feature fusion-based patch embedding and a relation-aware dynamic graph convolution network. The patch embedding method uses a multi-scale feature fusion mechanism to obtain more discriminative graph node features for further graph representation learning. A dynamic graph is constructed using the dilated k-nearest neighbors algorithm, and a relation-aware graph convolution operator is designed to learn the latent informative correlations among different nodes in the graph. Extensive experiment results show that Face2Nodes achieves state-of-the-art performance on several popular in-the-wild FER datasets, with overall accuracies of 91.41%, 91.02%, and 66.69% on the FERPlus, RAF-DB, and AffectNet databases, respectively. Furthermore, we found that CNN-based FER approaches have a more significant performance gap between pre-training and training from scratch than Face2Nodes, demonstrating that our model is more data-efficient than CNN-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
55秒前
笔墨纸砚完成签到 ,获得积分10
1分钟前
阿洁完成签到,获得积分10
1分钟前
阿洁发布了新的文献求助10
1分钟前
复杂白凡应助阿洁采纳,获得10
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
2分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
2分钟前
充电宝应助哭泣的芷蝶采纳,获得10
2分钟前
江南之南完成签到 ,获得积分10
2分钟前
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
斯文听寒完成签到 ,获得积分10
4分钟前
5分钟前
HS完成签到,获得积分10
5分钟前
MLR发布了新的文献求助10
5分钟前
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
5分钟前
thginK9z完成签到,获得积分10
6分钟前
mzhang2完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
打打应助hamliton采纳,获得10
6分钟前
7分钟前
7分钟前
Jasper应助贝利亚采纳,获得10
7分钟前
只如初完成签到 ,获得积分10
7分钟前
Jessica完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269