Face2Nodes: Learning facial expression representations with relation-aware dynamic graph convolution networks

计算机科学 模式识别(心理学) 嵌入 人工智能 图形 卷积神经网络 判别式 图嵌入 特征学习 深度学习 面部表情 卷积(计算机科学) 理论计算机科学 人工神经网络
作者
Fan Jiang,Qionghao Huang,Xiaoyong Mei,Quanlong Guan,Yaxin Tu,Weiqi Luo,Changqin Huang
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119640-119640 被引量:5
标识
DOI:10.1016/j.ins.2023.119640
摘要

Deep convolutional neural networks (CNNs) have become the standard model architecture for facial expression recognition (FER). However, CNN-based models struggle to capture the structural correlations between different local regions in a face image. Recent methods based on Vision Transformer (ViT) have been introduced to capture long-range dependencies among local regions. Nonetheless, ViT-based approaches are vulnerable to facial regions unrelated to expressions and may learn redundant correlation representations due to their self-attention mechanism. To address these issues, we propose a novel graph-based model called Face2Nodes, which can flexibly learn the graph representations of facial expressions without requiring additional auxiliary facial information such as landmarks. Our Face2Nodes consists of two key components: a multi-scale feature fusion-based patch embedding and a relation-aware dynamic graph convolution network. The patch embedding method uses a multi-scale feature fusion mechanism to obtain more discriminative graph node features for further graph representation learning. A dynamic graph is constructed using the dilated k-nearest neighbors algorithm, and a relation-aware graph convolution operator is designed to learn the latent informative correlations among different nodes in the graph. Extensive experiment results show that Face2Nodes achieves state-of-the-art performance on several popular in-the-wild FER datasets, with overall accuracies of 91.41%, 91.02%, and 66.69% on the FERPlus, RAF-DB, and AffectNet databases, respectively. Furthermore, we found that CNN-based FER approaches have a more significant performance gap between pre-training and training from scratch than Face2Nodes, demonstrating that our model is more data-efficient than CNN-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
55完成签到 ,获得积分10
1秒前
上官若男应助南部之星琪采纳,获得10
1秒前
2秒前
小中医完成签到,获得积分10
2秒前
hh发布了新的文献求助10
3秒前
Akim应助Archer采纳,获得10
3秒前
Lucas应助piaopiao1122采纳,获得10
3秒前
手拿把掐吴完成签到,获得积分10
3秒前
独特的梦菲完成签到,获得积分10
3秒前
向上发布了新的文献求助10
4秒前
汉堡包应助紫色奶萨采纳,获得10
4秒前
Nini1203发布了新的文献求助30
4秒前
慕青应助外向半青采纳,获得10
4秒前
YMJ12345完成签到,获得积分20
4秒前
ycccc完成签到,获得积分20
4秒前
777发布了新的文献求助10
5秒前
5秒前
Bluebubble完成签到,获得积分10
5秒前
yu发布了新的文献求助10
7秒前
8秒前
CRANE完成签到 ,获得积分10
9秒前
脑洞疼应助苞大米采纳,获得10
10秒前
11秒前
12秒前
恍惚123发布了新的文献求助10
14秒前
Hello应助学术蝗虫采纳,获得10
18秒前
19秒前
19秒前
20秒前
科研通AI2S应助lhm采纳,获得10
22秒前
23秒前
李爱国应助恍惚123采纳,获得10
23秒前
24秒前
郭志晟完成签到 ,获得积分10
25秒前
Archer发布了新的文献求助10
25秒前
lkk183完成签到 ,获得积分10
25秒前
gb发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503