Face2Nodes: Learning facial expression representations with relation-aware dynamic graph convolution networks

计算机科学 模式识别(心理学) 嵌入 人工智能 图形 卷积神经网络 判别式 图嵌入 特征学习 深度学习 面部表情 卷积(计算机科学) 理论计算机科学 人工神经网络
作者
Fan Jiang,Qionghao Huang,Xiaoyong Mei,Quanlong Guan,Yaxin Tu,Weiqi Luo,Changqin Huang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119640-119640 被引量:5
标识
DOI:10.1016/j.ins.2023.119640
摘要

Deep convolutional neural networks (CNNs) have become the standard model architecture for facial expression recognition (FER). However, CNN-based models struggle to capture the structural correlations between different local regions in a face image. Recent methods based on Vision Transformer (ViT) have been introduced to capture long-range dependencies among local regions. Nonetheless, ViT-based approaches are vulnerable to facial regions unrelated to expressions and may learn redundant correlation representations due to their self-attention mechanism. To address these issues, we propose a novel graph-based model called Face2Nodes, which can flexibly learn the graph representations of facial expressions without requiring additional auxiliary facial information such as landmarks. Our Face2Nodes consists of two key components: a multi-scale feature fusion-based patch embedding and a relation-aware dynamic graph convolution network. The patch embedding method uses a multi-scale feature fusion mechanism to obtain more discriminative graph node features for further graph representation learning. A dynamic graph is constructed using the dilated k-nearest neighbors algorithm, and a relation-aware graph convolution operator is designed to learn the latent informative correlations among different nodes in the graph. Extensive experiment results show that Face2Nodes achieves state-of-the-art performance on several popular in-the-wild FER datasets, with overall accuracies of 91.41%, 91.02%, and 66.69% on the FERPlus, RAF-DB, and AffectNet databases, respectively. Furthermore, we found that CNN-based FER approaches have a more significant performance gap between pre-training and training from scratch than Face2Nodes, demonstrating that our model is more data-efficient than CNN-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
Murphy_H完成签到,获得积分10
4秒前
6秒前
6秒前
8秒前
9秒前
陌上花开完成签到,获得积分0
10秒前
12秒前
单薄店员发布了新的文献求助10
12秒前
14秒前
巫马夜安完成签到,获得积分10
15秒前
思源应助雪白的小虾米采纳,获得10
15秒前
16秒前
健忘捕完成签到 ,获得积分10
19秒前
20秒前
鲍复天完成签到,获得积分10
21秒前
独特秋凌发布了新的文献求助10
21秒前
22秒前
大模型应助幸福的向彤采纳,获得10
23秒前
嗯嗯完成签到 ,获得积分10
24秒前
hinatazaka46完成签到 ,获得积分10
24秒前
25秒前
26秒前
26秒前
接受所有小饼干完成签到 ,获得积分10
27秒前
鱼丸发布了新的文献求助10
27秒前
歇菜发布了新的文献求助10
29秒前
匿名发布了新的文献求助10
30秒前
mm发布了新的文献求助10
30秒前
May发布了新的文献求助10
30秒前
活蹦乱跳二愣子完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
634301059完成签到 ,获得积分10
32秒前
蛙鼠兔完成签到,获得积分10
33秒前
Jalin完成签到 ,获得积分10
33秒前
烂漫代曼完成签到 ,获得积分10
33秒前
多多指教完成签到,获得积分10
33秒前
隐形曼青应助123采纳,获得10
34秒前
鱼丸完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499