FECAM: Frequency enhanced channel attention mechanism for time series forecasting

架空(工程) 频道(广播) 离散余弦变换 噪音(视频) 算法 离散傅里叶变换(通用) 计算机科学 快速傅里叶变换 人工智能 吉布斯现象 转化(遗传学) 频域 傅里叶变换 电信 机器学习 数学 傅里叶分析 短时傅里叶变换 数学分析 生物化学 化学 图像(数学) 计算机视觉 基因 操作系统
作者
Maowei Jiang,Pengyu Zeng,Kai Wang,Huan Liu,Wenbo Chen,Haoran Liu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102158-102158 被引量:43
标识
DOI:10.1016/j.aei.2023.102158
摘要

Time series forecasting (TSF) is a challenging problem in various real-world scenarios, such as industry, energy, weather, traffic, economics, and earthquake warning. TSF demands the model to have a high prediction accuracy. Despite the promising performance of deep learning-based methods in TSF tasks, mainstream forecasting models may sometimes produce results that deviate from the actual ground truth. Our analysis suggests that this may be attributed to the models’ limited ability to capture the frequency information that is abundantly present in real-world datasets. Currently, the Fourier Transform (FT) is the most widely used method for extracting frequency information, but it has some issues that lead to poor model performance, such as high-frequency noise caused by the Gibbs phenomenon and computational overhead of the inverse transformation in the FT-IFT process. To address these issues, we propose a novel frequency enhanced channel attention mechanism (FECAM) that models frequency interdependencies between channels based on Discrete Cosine Transform (DCT), which inherently mitigates the high-frequency noise caused by problematic periodicity during Fourier Transform. This approach improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations. Our contributions are threefold: (1) We propose a novel frequency enhanced channel attention mechanism that models frequency interdependencies between channels based on DCT, which improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations; (2) We theoretically prove that our method mitigates the Gibbs phenomenon, which introduces high frequency noise during Fourier Transform. We demonstrate that the result of 1D GAP linearly varies with the lowest frequency component of 1D DCT; (3) We demonstrate the generalization ability of the proposed method FECAM by embedding it into other networks, resulting in significant performance improvements when compared to the original model, with only a minor increase in parameters. Furthermore, we conduct extensive experiments on six different real-world TSF datasets to validate the effectiveness of our proposed model and compare it with several existing state-of-the-art models. Our findings indicate that the FECAM model is superior to these models in terms of accuracy, making it a promising solution for TSF in diverse real-world scenarios. Our codes and data are available at https://github.com/Zero-coder/FECAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿托品完成签到,获得积分10
刚刚
脑洞疼应助鱼鱼鱼采纳,获得10
1秒前
kento发布了新的文献求助30
1秒前
CipherSage应助念姬采纳,获得10
2秒前
li完成签到,获得积分10
2秒前
华仔应助kingcoming采纳,获得10
3秒前
4秒前
小洋同学可能不在完成签到 ,获得积分10
5秒前
6秒前
梧桐的灯完成签到 ,获得积分10
7秒前
8秒前
9秒前
完美世界应助zorro3574采纳,获得10
9秒前
纪震宇发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
lpj发布了新的文献求助10
12秒前
薄荷发布了新的文献求助10
13秒前
13秒前
13秒前
Arizonacyy完成签到 ,获得积分10
14秒前
俭朴映阳发布了新的文献求助10
14秒前
柚子茶茶茶完成签到,获得积分10
15秒前
您得疼发布了新的文献求助10
16秒前
嘻嘻lxs发布了新的文献求助10
16秒前
17秒前
落后雁菱完成签到,获得积分10
17秒前
17秒前
18秒前
潇湘学术发布了新的文献求助10
18秒前
英俊的铭应助qiuli采纳,获得10
19秒前
superfatcat完成签到,获得积分10
20秒前
dong应助柚子茶茶茶采纳,获得10
21秒前
蜂蜜罐zi完成签到 ,获得积分10
23秒前
hikh完成签到,获得积分20
24秒前
学术智子发布了新的文献求助20
24秒前
xiaohongmao完成签到,获得积分10
24秒前
kingcoming发布了新的文献求助10
24秒前
鱼鱼鱼发布了新的文献求助10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579