FECAM: Frequency enhanced channel attention mechanism for time series forecasting

架空(工程) 频道(广播) 离散余弦变换 噪音(视频) 算法 离散傅里叶变换(通用) 计算机科学 快速傅里叶变换 人工智能 吉布斯现象 转化(遗传学) 频域 傅里叶变换 电信 机器学习 数学 傅里叶分析 短时傅里叶变换 图像(数学) 计算机视觉 数学分析 操作系统 基因 化学 生物化学
作者
Maowei Jiang,Pengyu Zeng,Kai Wang,Huan Liu,Wenbo Chen,Haoran Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102158-102158 被引量:16
标识
DOI:10.1016/j.aei.2023.102158
摘要

Time series forecasting (TSF) is a challenging problem in various real-world scenarios, such as industry, energy, weather, traffic, economics, and earthquake warning. TSF demands the model to have a high prediction accuracy. Despite the promising performance of deep learning-based methods in TSF tasks, mainstream forecasting models may sometimes produce results that deviate from the actual ground truth. Our analysis suggests that this may be attributed to the models’ limited ability to capture the frequency information that is abundantly present in real-world datasets. Currently, the Fourier Transform (FT) is the most widely used method for extracting frequency information, but it has some issues that lead to poor model performance, such as high-frequency noise caused by the Gibbs phenomenon and computational overhead of the inverse transformation in the FT-IFT process. To address these issues, we propose a novel frequency enhanced channel attention mechanism (FECAM) that models frequency interdependencies between channels based on Discrete Cosine Transform (DCT), which inherently mitigates the high-frequency noise caused by problematic periodicity during Fourier Transform. This approach improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations. Our contributions are threefold: (1) We propose a novel frequency enhanced channel attention mechanism that models frequency interdependencies between channels based on DCT, which improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations; (2) We theoretically prove that our method mitigates the Gibbs phenomenon, which introduces high frequency noise during Fourier Transform. We demonstrate that the result of 1D GAP linearly varies with the lowest frequency component of 1D DCT; (3) We demonstrate the generalization ability of the proposed method FECAM by embedding it into other networks, resulting in significant performance improvements when compared to the original model, with only a minor increase in parameters. Furthermore, we conduct extensive experiments on six different real-world TSF datasets to validate the effectiveness of our proposed model and compare it with several existing state-of-the-art models. Our findings indicate that the FECAM model is superior to these models in terms of accuracy, making it a promising solution for TSF in diverse real-world scenarios. Our codes and data are available at https://github.com/Zero-coder/FECAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YG完成签到,获得积分10
1秒前
小丛雨发布了新的文献求助10
2秒前
3秒前
Ava应助辛勤的小蜜蜂采纳,获得10
3秒前
kaka091完成签到,获得积分10
5秒前
梧桐发布了新的文献求助20
5秒前
希望天下0贩的0应助易姜采纳,获得20
7秒前
呆呆完成签到,获得积分20
7秒前
Rolandiss完成签到 ,获得积分10
9秒前
css完成签到,获得积分10
10秒前
xiamu发布了新的文献求助10
10秒前
10秒前
11秒前
汉堡包应助呆萌谷兰采纳,获得10
12秒前
调皮初蓝完成签到,获得积分10
14秒前
coolkid完成签到,获得积分10
14秒前
Qi完成签到 ,获得积分10
14秒前
15秒前
地瓜儿完成签到,获得积分10
16秒前
调皮初蓝发布了新的文献求助10
16秒前
coolkid发布了新的文献求助10
17秒前
遮宁完成签到,获得积分10
19秒前
搜集达人应助小丛雨采纳,获得10
19秒前
韩麒嘉完成签到,获得积分10
19秒前
十二完成签到 ,获得积分10
19秒前
20秒前
21秒前
豆浆来点蒜泥完成签到,获得积分10
21秒前
22秒前
虚幻龙猫完成签到,获得积分10
23秒前
24秒前
chun完成签到 ,获得积分10
25秒前
Anquan完成签到,获得积分10
26秒前
然大宝发布了新的文献求助10
26秒前
26秒前
genomed应助lailight采纳,获得20
26秒前
笔记本完成签到,获得积分0
30秒前
30秒前
自由的语柳完成签到,获得积分20
32秒前
八九完成签到 ,获得积分10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185