清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FECAM: Frequency enhanced channel attention mechanism for time series forecasting

架空(工程) 频道(广播) 离散余弦变换 噪音(视频) 算法 离散傅里叶变换(通用) 计算机科学 快速傅里叶变换 人工智能 吉布斯现象 转化(遗传学) 频域 傅里叶变换 电信 机器学习 数学 傅里叶分析 短时傅里叶变换 图像(数学) 计算机视觉 数学分析 操作系统 基因 化学 生物化学
作者
Maowei Jiang,Pengyu Zeng,Kai Wang,Huan Liu,Wenbo Chen,Haoran Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102158-102158 被引量:59
标识
DOI:10.1016/j.aei.2023.102158
摘要

Time series forecasting (TSF) is a challenging problem in various real-world scenarios, such as industry, energy, weather, traffic, economics, and earthquake warning. TSF demands the model to have a high prediction accuracy. Despite the promising performance of deep learning-based methods in TSF tasks, mainstream forecasting models may sometimes produce results that deviate from the actual ground truth. Our analysis suggests that this may be attributed to the models’ limited ability to capture the frequency information that is abundantly present in real-world datasets. Currently, the Fourier Transform (FT) is the most widely used method for extracting frequency information, but it has some issues that lead to poor model performance, such as high-frequency noise caused by the Gibbs phenomenon and computational overhead of the inverse transformation in the FT-IFT process. To address these issues, we propose a novel frequency enhanced channel attention mechanism (FECAM) that models frequency interdependencies between channels based on Discrete Cosine Transform (DCT), which inherently mitigates the high-frequency noise caused by problematic periodicity during Fourier Transform. This approach improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations. Our contributions are threefold: (1) We propose a novel frequency enhanced channel attention mechanism that models frequency interdependencies between channels based on DCT, which improves the model’s capability to extract frequency features and resolves computational overhead concerns that arise from inverse transformations; (2) We theoretically prove that our method mitigates the Gibbs phenomenon, which introduces high frequency noise during Fourier Transform. We demonstrate that the result of 1D GAP linearly varies with the lowest frequency component of 1D DCT; (3) We demonstrate the generalization ability of the proposed method FECAM by embedding it into other networks, resulting in significant performance improvements when compared to the original model, with only a minor increase in parameters. Furthermore, we conduct extensive experiments on six different real-world TSF datasets to validate the effectiveness of our proposed model and compare it with several existing state-of-the-art models. Our findings indicate that the FECAM model is superior to these models in terms of accuracy, making it a promising solution for TSF in diverse real-world scenarios. Our codes and data are available at https://github.com/Zero-coder/FECAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweet雪儿妞妞完成签到 ,获得积分10
4秒前
夜休2024完成签到 ,获得积分10
10秒前
SciGPT应助xing采纳,获得10
11秒前
16秒前
小石榴的爸爸完成签到 ,获得积分10
18秒前
xing完成签到,获得积分10
20秒前
小石榴爸爸完成签到 ,获得积分10
26秒前
顾矜应助掠影采纳,获得30
29秒前
zzz完成签到,获得积分10
31秒前
幻想小蜜蜂完成签到,获得积分10
38秒前
研友_VZG7GZ应助科研通管家采纳,获得10
59秒前
59秒前
shhoing应助科研通管家采纳,获得10
59秒前
59秒前
1分钟前
掠影发布了新的文献求助30
1分钟前
snn完成签到 ,获得积分10
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
掠影完成签到,获得积分10
1分钟前
1分钟前
666完成签到 ,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
2分钟前
Java完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
张杰列夫完成签到 ,获得积分10
3分钟前
jh完成签到 ,获得积分10
3分钟前
结实凌瑶完成签到 ,获得积分10
3分钟前
wanci应助hao采纳,获得10
3分钟前
3分钟前
hao发布了新的文献求助10
3分钟前
小乐完成签到,获得积分10
3分钟前
梦里的大子刊完成签到 ,获得积分10
3分钟前
Augenstern完成签到 ,获得积分10
3分钟前
3分钟前
欢喜的问凝完成签到 ,获得积分10
3分钟前
coding完成签到,获得积分10
4分钟前
852应助Liumingyu采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539082
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566725
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453018