计算机科学
分割
特征(语言学)
背景(考古学)
人工智能
对偶(语法数字)
光学(聚焦)
领域(数学分析)
多样性(控制论)
编码(内存)
残余物
过程(计算)
注释
领域(数学)
模式识别(心理学)
计算机视觉
算法
地理
艺术
哲学
数学分析
文学类
考古
物理
纯数学
光学
操作系统
语言学
数学
作者
Nhu-Tai Do,Vo Thanh Hoang Son,Tram-Tran Nguyen-Quynh,Soo-Hyung Kim
标识
DOI:10.1109/icip49359.2023.10222602
摘要
Accurate brain tumor segmentation plays an essential role in the diagnosis process. However, there are challenges due to the variety of tumors in low contrast, morphology, location, annotation bias, and imbalance among tumor regions. This work proposes a novel 3D dual-domain attention module to learn local and global information in spatial and context domains from encoding feature maps in Unet. Our attention module generates refined feature maps from the enlarged reception field at every stage by attention mechanisms and residual learning to focus on complex tumor regions. Our experiments on BraTS 2018 have demonstrated superior performance compared to existing state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI