Synergistic effect of internal electric field and ligand-to-metal charge transfer in Z-scheme CuPc/ZnIn2S4 for boosting photocatalytic hydrogen evolution

光催化 制氢 材料科学 光化学 分解水 光催化分解水 载流子 接受者 金属 化学 光电子学 催化作用 物理 有机化学 冶金 凝聚态物理
作者
Chengzheng Men,Liuyun Chen,Hongbing Ji,Zuzeng Qin,Tongming Su
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145173-145173 被引量:34
标识
DOI:10.1016/j.cej.2023.145173
摘要

The construction of an efficient and stable photocatalytic water splitting system is the critical path and arduous challenge to convert solar energy into green hydrogen energy. Herein, a novel CuPc/ZnIn2S4 organic–inorganic hybrid photocatalyst was designed and used for photocatalytic hydrogen production from water. The separation of photogenerated electrons and holes was greatly enhanced due to the formation of the compact organic–inorganic heterointerface and the Z-scheme charge transport mechanism between CuPc and ZnIn2S4. Meanwhile, CuPc can broaden the light absorption of CuPc/ZnIn2S4 to the near infrared region, which enhances the utilization of sunlight. Moreover, the Cu metal center of CuPc could serve as the electron acceptor to accumulate photogenerated electrons via the ligand-to-metal charge transfer pathway, which further accelerates the separation of photogenerated charge carriers and enhances the photocatalytic hydrogen production efficiency. The optimal CuPc/ZnIn2S4 photocatalyst exhibited a hydrogen production rate of 151.2 μmol h−1, which was 8.1 times higher than that of pristine ZnIn2S4 under visible light irradiation. This work provides an idea for the construction of an organic–inorganic photocatalytic system for solar hydrogen production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ying完成签到,获得积分10
1秒前
DreamMaker应助文件撤销了驳回
1秒前
1秒前
1秒前
YFL发布了新的文献求助10
2秒前
顿手把其完成签到,获得积分10
4秒前
为十发布了新的文献求助10
4秒前
4秒前
顺利山柏发布了新的文献求助10
5秒前
冬虫夏草发布了新的文献求助10
6秒前
8秒前
8秒前
11秒前
嘁嘁嘁完成签到,获得积分10
11秒前
科研小白完成签到 ,获得积分10
14秒前
Gavin完成签到,获得积分10
14秒前
14秒前
嘁嘁嘁发布了新的文献求助10
15秒前
思源应助仙女采纳,获得10
16秒前
kiki0808完成签到 ,获得积分10
17秒前
Lio完成签到,获得积分10
18秒前
18秒前
阿龙发布了新的文献求助10
18秒前
18秒前
Dandanhuang发布了新的文献求助10
19秒前
lili发布了新的文献求助10
20秒前
杨子怡完成签到 ,获得积分10
21秒前
为十完成签到,获得积分10
22秒前
Leon Lai完成签到,获得积分0
22秒前
Aries完成签到,获得积分10
23秒前
23秒前
23秒前
金碧河发布了新的文献求助10
24秒前
冷艳馒头完成签到,获得积分10
24秒前
科研丁真完成签到,获得积分10
26秒前
LEE123完成签到,获得积分10
26秒前
默默善愁完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080