Artificial intelligence: Machine learning approach for screening large database and drug discovery

药物发现 计算机科学 虚拟筛选 背景(考古学) 机器学习 人工智能 药效团 数据库 生物信息学 生物 古生物学
作者
Prachi P. Parvatikar,Sudha Patil,Kedar Khaparkhuntikar,Shruti Patil,Pankaj K. Singh,R. Sahana,Raghavendra V. Kulkarni,Anjanapura V. Raghu
出处
期刊:Antiviral Research [Elsevier]
卷期号:220: 105740-105740 被引量:3
标识
DOI:10.1016/j.antiviral.2023.105740
摘要

Recent research in drug discovery dealing with many faces difficulties, including development of new drugs during disease outbreak and drug resistance due to rapidly accumulating mutations. Virtual screening is the most widely used method in computer aided drug discovery. It has a prominent ability in screening drug targets from large molecular databases. Recently, a number of web servers have developed for quickly screening publicly accessible chemical databases. In a nutshell, deep learning algorithms and artificial neural networks have modernised the field. Several drug discovery processes have used machine learning and deep learning algorithms, including peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modelling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Although there are presently a wide variety of data-driven AI/ML tools available, the majority of these tools have, up to this point, been developed in the context of non-communicable diseases like cancer, and a number of obstacles have prevented the translation of these tools to the discovery of treatments against infectious diseases. In this review various aspects of AI and ML in virtual screening of large databases were discussed. Here, with an emphasis on antivirals as well as other disease, offers a perspective on the advantages, drawbacks, and hazards of AI/ML techniques in the search for innovative treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣高烽发布了新的文献求助10
刚刚
科研通AI2S应助云云采纳,获得10
刚刚
1秒前
1秒前
biofresh完成签到,获得积分10
2秒前
隐形秋完成签到,获得积分10
3秒前
椿上春树完成签到,获得积分10
3秒前
江洋小偷完成签到,获得积分10
4秒前
4秒前
互助遵法尚德应助miemie采纳,获得10
4秒前
5秒前
漂亮的倒挂金钩完成签到,获得积分10
5秒前
OVERLXRD完成签到,获得积分10
5秒前
果果完成签到,获得积分20
6秒前
6秒前
充电宝应助无聊先知采纳,获得10
7秒前
小黎完成签到,获得积分10
7秒前
齐俞如发布了新的文献求助10
7秒前
陈嘉木完成签到,获得积分10
7秒前
7秒前
8秒前
小小发布了新的文献求助10
9秒前
9秒前
10秒前
相知完成签到,获得积分20
10秒前
研友_Z1Xa0n发布了新的文献求助10
11秒前
11秒前
12秒前
苏菲的金发哈尔完成签到,获得积分10
12秒前
particularc完成签到,获得积分10
12秒前
耍酷激光豆完成签到,获得积分10
12秒前
小于发布了新的文献求助10
13秒前
13秒前
碗碗完成签到,获得积分20
14秒前
lixiao应助azdax采纳,获得10
14秒前
小夏咕噜发布了新的文献求助10
14秒前
susong987完成签到,获得积分10
14秒前
大模型应助萌萌雨采纳,获得10
14秒前
14秒前
timemaster666应助hu采纳,获得10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587