清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics

计算机科学 计算生物学 推论 鉴定(生物学) 钥匙(锁) 细胞 协议(科学) 人工智能 生物 遗传学 医学 植物 计算机安全 替代医学 病理
作者
Suoqin Jin,Maksim V. Plikus,Suoqin Jin
标识
DOI:10.1101/2023.11.05.565674
摘要

Abstract Recent advances in single-cell sequencing technologies offer an opportunity to explore cell-cell communication in tissues systematically and with reduced bias. A key challenge is the integration between known molecular interactions and measurements into a framework to identify and analyze complex cell-cell communication networks. Previously, we developed a computational tool, named CellChat that infers and analyzes cell-cell communication networks from single-cell RNA-sequencing (scRNA-seq) data within an easily interpretable framework. CellChat quantifies the signaling communication probability between two cell groups using a simplified mass action-based model, which incorporates the core interaction between ligands and receptors with multi-subunit structure along with modulation by cofactors. CellChat v2 is an updated version that includes direct incorporation of spatial locations of cells, if available, to infer spatially proximal cell-cell communication, additional comparison functionalities, expanded database of ligand-receptor pairs along with rich annotations, and an Interactive CellChat Explorer. Here we provide a step-by-step protocol for using CellChat v2 that can be used for both scRNA-seq and spatially resolved transcriptomic data, including inference and analysis of cell-cell communication from one dataset and identification of altered signaling across different datasets. The key steps of applying CellChat v2 to spatially resolved transcriptomics are described in detail. The R implementation of CellChat v2 toolkit and tutorials with the graphic outputs are available at https://github.com/jinworks/CellChat . This protocol typically takes around 20 minutes, and no specialized prior bioinformatics training is required to complete the task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实红酒完成签到,获得积分10
1秒前
高兴的海亦完成签到,获得积分10
10秒前
12秒前
随心所欲完成签到 ,获得积分10
12秒前
asdfzxcv应助高兴的海亦采纳,获得10
23秒前
lili完成签到 ,获得积分10
47秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Aimee完成签到 ,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
WLX001完成签到 ,获得积分10
1分钟前
2分钟前
优美香露发布了新的文献求助10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
2分钟前
善学以致用应助Cara采纳,获得10
2分钟前
牛八先生完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
drirshad完成签到,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
四天垂完成签到 ,获得积分10
3分钟前
3分钟前
cheers发布了新的文献求助10
4分钟前
希望天下0贩的0应助cheers采纳,获得10
4分钟前
4分钟前
yin景景发布了新的文献求助100
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706503
求助须知:如何正确求助?哪些是违规求助? 5174433
关于积分的说明 15246998
捐赠科研通 4859993
什么是DOI,文献DOI怎么找? 2608303
邀请新用户注册赠送积分活动 1559220
关于科研通互助平台的介绍 1517002