亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics

计算机科学 计算生物学 推论 鉴定(生物学) 钥匙(锁) 细胞 协议(科学) 人工智能 生物 遗传学 医学 植物 计算机安全 替代医学 病理
作者
Suoqin Jin,Maksim V. Plikus,Suoqin Jin
标识
DOI:10.1101/2023.11.05.565674
摘要

Abstract Recent advances in single-cell sequencing technologies offer an opportunity to explore cell-cell communication in tissues systematically and with reduced bias. A key challenge is the integration between known molecular interactions and measurements into a framework to identify and analyze complex cell-cell communication networks. Previously, we developed a computational tool, named CellChat that infers and analyzes cell-cell communication networks from single-cell RNA-sequencing (scRNA-seq) data within an easily interpretable framework. CellChat quantifies the signaling communication probability between two cell groups using a simplified mass action-based model, which incorporates the core interaction between ligands and receptors with multi-subunit structure along with modulation by cofactors. CellChat v2 is an updated version that includes direct incorporation of spatial locations of cells, if available, to infer spatially proximal cell-cell communication, additional comparison functionalities, expanded database of ligand-receptor pairs along with rich annotations, and an Interactive CellChat Explorer. Here we provide a step-by-step protocol for using CellChat v2 that can be used for both scRNA-seq and spatially resolved transcriptomic data, including inference and analysis of cell-cell communication from one dataset and identification of altered signaling across different datasets. The key steps of applying CellChat v2 to spatially resolved transcriptomics are described in detail. The R implementation of CellChat v2 toolkit and tutorials with the graphic outputs are available at https://github.com/jinworks/CellChat . This protocol typically takes around 20 minutes, and no specialized prior bioinformatics training is required to complete the task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
康康完成签到 ,获得积分10
5秒前
WX完成签到 ,获得积分10
20秒前
dream177777完成签到 ,获得积分10
22秒前
自信号厂完成签到 ,获得积分0
24秒前
38秒前
38秒前
Cmqq发布了新的文献求助10
42秒前
roe完成签到 ,获得积分10
45秒前
池雨完成签到 ,获得积分10
51秒前
黄宗泽完成签到 ,获得积分10
51秒前
56秒前
科研通AI6应助guan采纳,获得30
57秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
烟花应助Cmqq采纳,获得10
1分钟前
严伟完成签到 ,获得积分10
1分钟前
1分钟前
你好你好完成签到 ,获得积分10
1分钟前
1分钟前
肥牛完成签到,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
1分钟前
努力成为大佬完成签到,获得积分10
1分钟前
2分钟前
2分钟前
桐桐应助Cmqq采纳,获得10
2分钟前
空城发布了新的文献求助10
2分钟前
科研通AI2S应助空城采纳,获得10
2分钟前
暴走小面包完成签到 ,获得积分10
2分钟前
科研通AI6应助昵称已挥发采纳,获得10
2分钟前
2分钟前
机灵自中完成签到,获得积分10
2分钟前
2分钟前
大胆面包完成签到,获得积分10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904