Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzxp完成签到,获得积分10
1秒前
2秒前
2秒前
cocopepsi完成签到,获得积分10
2秒前
2秒前
2秒前
楠屿发布了新的文献求助10
2秒前
123466完成签到 ,获得积分10
3秒前
3秒前
3秒前
摩羯座小黄鸭完成签到,获得积分10
3秒前
3秒前
beenest发布了新的文献求助10
3秒前
4秒前
科研通AI5应助请叫我鬼才采纳,获得100
4秒前
oneday完成签到,获得积分10
4秒前
白色的风车完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
兰兰发布了新的文献求助10
5秒前
5秒前
yl完成签到,获得积分10
5秒前
kaka0934完成签到,获得积分10
6秒前
沐白发布了新的文献求助10
6秒前
高源发布了新的文献求助10
6秒前
DrY完成签到,获得积分20
6秒前
Lyven完成签到 ,获得积分10
6秒前
纪秋发布了新的文献求助10
6秒前
直率的青寒完成签到,获得积分10
6秒前
7秒前
万事顺意发布了新的文献求助10
7秒前
wxy发布了新的文献求助10
7秒前
rea完成签到,获得积分10
7秒前
Steven完成签到,获得积分10
7秒前
吴小苏完成签到,获得积分10
8秒前
ZYYZYY发布了新的文献求助30
8秒前
8秒前
8秒前
wwwu完成签到,获得积分10
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559