Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
chenying完成签到,获得积分10
刚刚
杨康1号发布了新的文献求助10
1秒前
1秒前
ZJCYY发布了新的文献求助10
2秒前
光亮宝贝发布了新的文献求助10
3秒前
3秒前
zzys发布了新的文献求助10
5秒前
科研通AI2S应助小白果果采纳,获得10
6秒前
科研通AI6应助GSGSG采纳,获得10
8秒前
thynkz完成签到,获得积分10
8秒前
8秒前
577完成签到,获得积分10
8秒前
平凡的世界完成签到,获得积分10
9秒前
轻雨完成签到 ,获得积分10
9秒前
杨康1号完成签到,获得积分10
9秒前
Mr.Reese完成签到,获得积分10
11秒前
ZJCYY完成签到,获得积分10
12秒前
13秒前
养不熟的野猫完成签到,获得积分10
13秒前
清璃完成签到 ,获得积分10
15秒前
机智听兰发布了新的文献求助100
15秒前
15秒前
鬼火完成签到,获得积分10
15秒前
李健的小迷弟应助咚咚采纳,获得10
18秒前
漂亮雅山发布了新的文献求助10
18秒前
19秒前
zxcvbnm完成签到,获得积分10
19秒前
善学以致用应助风清扬采纳,获得10
20秒前
20秒前
21秒前
半糖微辣发布了新的文献求助10
22秒前
willllll完成签到 ,获得积分10
22秒前
22秒前
复方蛋酥卷完成签到,获得积分10
23秒前
24秒前
轻雨发布了新的文献求助10
24秒前
彭于晏应助鬼火采纳,获得10
25秒前
研友_VZG7GZ应助活力发箍采纳,获得10
25秒前
ding应助WX采纳,获得10
25秒前
李爱国应助梁平采纳,获得10
25秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502026
求助须知:如何正确求助?哪些是违规求助? 4598072
关于积分的说明 14462410
捐赠科研通 4531657
什么是DOI,文献DOI怎么找? 2483446
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496