Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助郑木木采纳,获得10
刚刚
1秒前
科研通AI6应助寒冷的箴采纳,获得10
1秒前
2秒前
3秒前
YU完成签到,获得积分10
4秒前
NGC发布了新的文献求助10
4秒前
端庄的妙菱完成签到,获得积分10
4秒前
4秒前
6秒前
香菜芋头完成签到,获得积分10
6秒前
完美世界应助eijgnij采纳,获得10
6秒前
WB发布了新的文献求助10
7秒前
行走人生完成签到,获得积分10
7秒前
思源应助jagger采纳,获得10
8秒前
9秒前
YU发布了新的文献求助10
9秒前
xiaohui发布了新的文献求助10
9秒前
夹心发布了新的文献求助10
9秒前
刻苦的长颈鹿完成签到,获得积分10
10秒前
体贴雪碧发布了新的文献求助10
10秒前
一只猪完成签到,获得积分10
10秒前
11秒前
111完成签到,获得积分20
11秒前
Ava应助WB采纳,获得10
13秒前
14秒前
14秒前
魔幻诗兰完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
stellc完成签到,获得积分10
15秒前
15秒前
祝你开心发布了新的文献求助10
16秒前
追寻宛海完成签到,获得积分10
17秒前
KKK发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
迷人静白完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901