Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
万能图书馆应助孤梦落雨采纳,获得10
1秒前
让我再吃两口完成签到 ,获得积分10
1秒前
李健应助开朗的乐蕊采纳,获得10
1秒前
2秒前
aaaa完成签到,获得积分10
2秒前
爱吃肥牛完成签到,获得积分10
2秒前
浪子应助yanziwu94采纳,获得10
2秒前
善学以致用应助徐向成采纳,获得10
3秒前
失眠的夏柳完成签到,获得积分10
3秒前
Jay完成签到,获得积分20
4秒前
huxuehong完成签到 ,获得积分10
4秒前
小Y应助卫踏歌采纳,获得20
4秒前
无语的凡梦完成签到,获得积分10
4秒前
rrjl完成签到,获得积分10
4秒前
cheng4046完成签到,获得积分10
4秒前
欢呼的帽子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
天真吴邪完成签到,获得积分10
5秒前
大力发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
QWSS发布了新的文献求助10
7秒前
shsdkl完成签到,获得积分10
7秒前
xdy1990完成签到,获得积分10
7秒前
在水一方应助山头人二号采纳,获得10
7秒前
justin完成签到,获得积分10
8秒前
zz完成签到 ,获得积分10
8秒前
7分运气完成签到,获得积分10
9秒前
Lament完成签到,获得积分10
9秒前
乐乐应助jia采纳,获得10
10秒前
10秒前
秋秋完成签到,获得积分10
10秒前
10秒前
Joey完成签到,获得积分10
10秒前
Sylvia完成签到,获得积分10
11秒前
Bill完成签到 ,获得积分0
11秒前
知鸢完成签到,获得积分10
12秒前
rrrrrrun完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658748
求助须知:如何正确求助?哪些是违规求助? 4824231
关于积分的说明 15082960
捐赠科研通 4817306
什么是DOI,文献DOI怎么找? 2578116
邀请新用户注册赠送积分活动 1532801
关于科研通互助平台的介绍 1491595