Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助luoyatu采纳,获得10
刚刚
领导范儿应助个性慕青采纳,获得10
刚刚
zqingxia完成签到,获得积分10
刚刚
爱吃树梅子完成签到,获得积分10
刚刚
完美世界应助Snoopy_Swan采纳,获得10
刚刚
羊羊完成签到 ,获得积分10
刚刚
刚刚
fdgsfb关注了科研通微信公众号
1秒前
1秒前
可乐SAMA完成签到,获得积分10
2秒前
2秒前
我是哑巴发布了新的文献求助10
3秒前
佳丽完成签到,获得积分20
3秒前
浪费发布了新的文献求助10
4秒前
大大完成签到,获得积分10
4秒前
4秒前
najibveto应助牛诗悦采纳,获得10
4秒前
Prime完成签到,获得积分10
4秒前
HD发布了新的文献求助10
4秒前
chcmuer完成签到,获得积分10
4秒前
sabre1980完成签到 ,获得积分10
4秒前
6秒前
晨曦完成签到,获得积分10
6秒前
hopen完成签到 ,获得积分10
6秒前
yueyue完成签到,获得积分10
6秒前
乐乐应助小郭采纳,获得10
6秒前
CipherSage应助DY采纳,获得10
7秒前
wshiyu完成签到 ,获得积分10
7秒前
7秒前
7秒前
莉莉完成签到,获得积分10
7秒前
7秒前
求学狗完成签到 ,获得积分10
8秒前
8秒前
范小小发布了新的文献求助10
8秒前
8秒前
半圆亻完成签到,获得积分10
8秒前
墨尘发布了新的文献求助10
9秒前
luoyatu完成签到,获得积分10
10秒前
可耐的手机完成签到 ,获得积分10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167644
求助须知:如何正确求助?哪些是违规求助? 2819109
关于积分的说明 7924992
捐赠科研通 2478979
什么是DOI,文献DOI怎么找? 1320569
科研通“疑难数据库(出版商)”最低求助积分说明 632836
版权声明 602443