Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals

计算机科学 脑电图 人工智能 模式识别(心理学) 分类器(UML) 医学 精神科
作者
Smith K. Khare,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110858-110858 被引量:22
标识
DOI:10.1016/j.knosys.2023.110858
摘要

Alzheimer’s disease (AZD) is a degenerative neurological condition that causes dementia and leads the brain to atrophy. Although AZD cannot be cured, early detection and prompt treatment can slow down its progression. AZD can be effectively identified via electroencephalogram (EEG) signals. But, it is challenging to analyze the EEG signals since they change quickly and spontaneously. Additionally, clinicians offer very little trust to the existing models due to lack of explainability in the predictions of machine learning or deep learning models. The paper a novel Adazd-Net which is an adaptive and explanatory framework for automated AZD identification using EEG signals. We propose the adaptive flexible analytic wavelet transform, which automatically adjusts to changes in EEGs. The optimum number of features needed for effective system performance is also explored in this work, along with the discovery of the most discriminant channel. The paper also presents the technique that can be used to explain both the individual and overall predictions provided by the classifier model. We have obtained an accuracy of 99.85% in detecting AZD EEG signals with ten-fold cross-validation strategy. We have suggested a precise and explainable AZD detection technique. Researchers and clinicians can investigate hidden information concerning changes in the brain during AZD using our proposed model. Our developed Adazd-Net model can be employed in hospital scenario to detect AZD, as it is accurate and robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxmt123456789发布了新的文献求助10
1秒前
星星闪闪的完成签到,获得积分20
2秒前
六个大洋完成签到 ,获得积分10
3秒前
小烦同学完成签到,获得积分10
6秒前
17835152738完成签到,获得积分10
6秒前
谦让寻凝完成签到 ,获得积分10
7秒前
sxmt123456789完成签到,获得积分10
10秒前
乐观健柏完成签到,获得积分10
11秒前
隐形曼青应助李宜甜采纳,获得30
11秒前
15秒前
lalala发布了新的文献求助10
18秒前
Queen发布了新的文献求助10
19秒前
19秒前
19秒前
雪雨夜心应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
事不过三应助科研通管家采纳,获得10
23秒前
23秒前
Orange应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得20
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
ZOE应助科研通管家采纳,获得20
23秒前
大模型应助科研通管家采纳,获得10
23秒前
如意2023完成签到 ,获得积分10
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
asdfqwer应助科研通管家采纳,获得10
24秒前
asdfqwer应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
RUC_Zhao完成签到,获得积分10
24秒前
聪慧语山完成签到 ,获得积分0
26秒前
27秒前
29秒前
雪山飞龙发布了新的文献求助10
30秒前
SC完成签到,获得积分10
31秒前
35秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139539
求助须知:如何正确求助?哪些是违规求助? 4338428
关于积分的说明 13512740
捐赠科研通 4177665
什么是DOI,文献DOI怎么找? 2290966
邀请新用户注册赠送积分活动 1291445
关于科研通互助平台的介绍 1233775