DETA-Net: A Dual Encoder Network with Text-Guided Attention Mechanism for Skin-Lesions Segmentation

掷骰子 计算机科学 分割 人工智能 编码器 卷积神经网络 皮肤损伤 对偶(语法数字) 模式识别(心理学) 医学 数学 病理 艺术 几何学 文学类 操作系统
作者
Cong Shen,Xinyue Wang,Jijun Tang,Zhijun Liao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 28-40 被引量:4
标识
DOI:10.1007/978-981-99-4749-2_3
摘要

Skin-lesions segmentation plays a prominent role in computer-aided diagnosis systems for skin cancer, especially the remarkable success of the convolutional neural network (CNN) approaches in skin-lesions segmentation. However, it faces intractable challenges such as variable shape and blurred skin lesions boundaries. To this end, past research has employed cutting-edge mechanisms, including diverse attention modules. Inspired by state-of-the-art works, this study proposed a Dual Encoder framework with a Text-Guided Attention Network (DETA-Net) which can accurately and efficiently segment various and blurred lesions. Firstly, we designed a multi-scale joint encoder that took the advantage of both the CNNs and Transformer to extract features under the blurred lesion background condition. In addition, we introduced text-guided attention to propel classification in the manner of text-based embedding in the DETA-Net so that the variation in the size and number of the lesion can be efficiently accommodated. Experimental results demonstrated that DETA-Net provided better performance across multiple datasets compared with state-of-the-art on variable-sized skin lesion datasets in Skin-Cancer detection. We also evaluated the effectiveness of DETA-Net through extensive ablation studies on three different datasets, including ISIC 2016, ISIC 2018, and PH2 datasets. The baseline achieved 0.8838 Dice on ISIC 2016, 0.8864 Dice on ISIC 2018, and 0.8695 Dice on PH2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
yizhiGao应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
星威应助科研通管家采纳,获得20
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
研友_VZG7GZ应助kevindeng采纳,获得20
1秒前
酷炫板凳完成签到 ,获得积分10
2秒前
凡仔完成签到,获得积分10
2秒前
Haicheng完成签到,获得积分10
2秒前
2秒前
Grayball应助平云采纳,获得10
3秒前
子车谷波完成签到,获得积分10
4秒前
4秒前
苏安泠完成签到 ,获得积分10
5秒前
5秒前
英勇的思天完成签到 ,获得积分10
6秒前
zzqx完成签到,获得积分10
8秒前
起司嗯完成签到,获得积分10
8秒前
开放鸵鸟完成签到,获得积分10
8秒前
徐徐发布了新的文献求助10
8秒前
ZZZ发布了新的文献求助10
9秒前
懵懂的子骞完成签到 ,获得积分10
10秒前
mammoth发布了新的文献求助40
10秒前
10秒前
英俊的铭应助Chang采纳,获得10
11秒前
11秒前
11秒前
kk子完成签到,获得积分10
12秒前
夏橪发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762