Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彳亍完成签到,获得积分10
1秒前
2秒前
4秒前
Lin完成签到,获得积分10
5秒前
5秒前
斯文败类应助乐观鑫鹏采纳,获得10
7秒前
浮游应助LHP采纳,获得10
8秒前
Lulul发布了新的文献求助10
9秒前
bai完成签到,获得积分10
9秒前
十一玮发布了新的文献求助10
10秒前
xdmhv完成签到,获得积分10
14秒前
15秒前
Akim应助Tian采纳,获得10
17秒前
水水的完成签到 ,获得积分10
19秒前
球球尧伞耳完成签到,获得积分10
22秒前
John完成签到,获得积分10
23秒前
25秒前
酷波er应助纯真猕猴桃采纳,获得10
25秒前
26秒前
didi发布了新的文献求助10
26秒前
万能图书馆应助qianqina采纳,获得30
26秒前
暮烟应助Lulul采纳,获得10
26秒前
虚幻的冬瓜完成签到 ,获得积分10
29秒前
小翼发布了新的文献求助10
31秒前
33秒前
36秒前
glay发布了新的文献求助10
40秒前
想睡觉的小笼包完成签到 ,获得积分10
40秒前
称心映寒完成签到 ,获得积分10
42秒前
isak完成签到 ,获得积分10
42秒前
rachel03发布了新的文献求助20
45秒前
某某完成签到 ,获得积分10
45秒前
48秒前
51秒前
巩佳铭发布了新的文献求助10
52秒前
隐形曼青应助科研通管家采纳,获得10
52秒前
李爱国应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
53秒前
李健应助十一玮采纳,获得10
53秒前
Hello应助科研通管家采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969