Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SION完成签到,获得积分10
1秒前
LeungYM完成签到 ,获得积分10
1秒前
1秒前
lhy完成签到,获得积分10
2秒前
2秒前
2秒前
研途发布了新的文献求助10
2秒前
安宁完成签到 ,获得积分10
3秒前
QJYKKK完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
耶喽小黄发布了新的文献求助10
6秒前
GUOGUO完成签到 ,获得积分10
7秒前
李宗洋完成签到,获得积分10
7秒前
xueshu发布了新的文献求助30
8秒前
dove00发布了新的文献求助10
8秒前
烟花应助椰子味冰淇淋采纳,获得10
8秒前
传奇3应助靳韩羽采纳,获得10
9秒前
kk55完成签到,获得积分10
9秒前
11秒前
NN发布了新的文献求助30
11秒前
小乔应助michael采纳,获得10
11秒前
ZOE应助9699采纳,获得50
11秒前
jasmineee完成签到 ,获得积分10
12秒前
Twonej给丫丫的求助进行了留言
12秒前
rumor发布了新的文献求助10
12秒前
Jasper应助跳跃小伙采纳,获得100
13秒前
wanwuzhumu发布了新的文献求助10
13秒前
小劉同志关注了科研通微信公众号
13秒前
林夕完成签到 ,获得积分10
13秒前
柔弱的老三完成签到 ,获得积分10
13秒前
14秒前
CadoreK完成签到 ,获得积分10
14秒前
landy完成签到 ,获得积分10
15秒前
舒心幻竹完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812