Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大帅哥完成签到 ,获得积分10
1秒前
1秒前
chenhouhan发布了新的文献求助10
1秒前
大模型应助粗暴的达采纳,获得10
1秒前
Jasper应助粗暴的达采纳,获得10
1秒前
1秒前
万能图书馆应助粗暴的达采纳,获得10
1秒前
Jasper应助粗暴的达采纳,获得10
1秒前
鲤鱼雨泽发布了新的文献求助10
2秒前
冷静发布了新的文献求助10
3秒前
gr发布了新的文献求助10
3秒前
4秒前
4秒前
开元完成签到,获得积分10
4秒前
星空完成签到,获得积分10
4秒前
流苏33完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
明亮的lunacake完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
jasmine发布了新的文献求助10
5秒前
5秒前
orixero应助Andrew采纳,获得10
5秒前
阿花完成签到,获得积分10
5秒前
凉笙墨染完成签到,获得积分10
6秒前
小马甲应助grata采纳,获得10
6秒前
生而追梦不止完成签到,获得积分10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
黑猫乾杯应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
SU15964707813完成签到,获得积分10
7秒前
单薄绿竹完成签到,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
昭奚发布了新的文献求助30
7秒前
科研通AI2S应助聪慧若风采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
阿喵完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188