Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助30
1秒前
慕青应助Amen采纳,获得10
1秒前
2秒前
可爱的函函应助甜甜沛蓝采纳,获得10
2秒前
英姑应助星期八采纳,获得10
2秒前
南兮完成签到,获得积分10
2秒前
3秒前
小二郎应助忧郁的灵竹采纳,获得10
3秒前
刘浩然完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
东耦完成签到,获得积分10
8秒前
9秒前
cyan完成签到,获得积分10
9秒前
zzzzzzzz完成签到,获得积分20
12秒前
FunHigh发布了新的文献求助10
12秒前
13秒前
13秒前
shunli完成签到,获得积分10
13秒前
WenjingziWang完成签到,获得积分10
13秒前
Amen发布了新的文献求助10
14秒前
Taemy完成签到,获得积分10
14秒前
15秒前
15秒前
佳琳有乐完成签到,获得积分10
16秒前
爆米花应助澡雪采纳,获得10
17秒前
星期八发布了新的文献求助10
17秒前
17秒前
元元发布了新的文献求助10
18秒前
梦蝴蝶完成签到,获得积分10
18秒前
19秒前
xrc关注了科研通微信公众号
20秒前
Amen完成签到,获得积分10
20秒前
NexusExplorer应助雨竹采纳,获得10
20秒前
CodeCraft应助琪哒采纳,获得10
20秒前
搜集达人应助一点通采纳,获得10
21秒前
nlyk发布了新的文献求助10
23秒前
汉堡包应助izzhan采纳,获得10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426