Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 物理 有机化学 无机化学 燃料电池
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PHNWNU发布了新的文献求助10
刚刚
黄景滨发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
Wang发布了新的文献求助20
刚刚
lbc完成签到,获得积分10
刚刚
samuealndjw发布了新的文献求助200
1秒前
冻干粉发布了新的文献求助10
1秒前
1秒前
一页书发布了新的文献求助10
1秒前
1秒前
30°C完成签到,获得积分20
1秒前
2秒前
syqlyd完成签到 ,获得积分10
2秒前
2秒前
2秒前
永远永远发布了新的文献求助10
3秒前
3秒前
LYQ15237208950完成签到 ,获得积分10
3秒前
木子囡月完成签到,获得积分10
3秒前
3秒前
局内人发布了新的文献求助10
3秒前
4秒前
善学以致用应助阳光彩虹采纳,获得10
4秒前
wanci应助kkem采纳,获得10
4秒前
杨晓柳完成签到,获得积分10
4秒前
5秒前
5秒前
马良完成签到,获得积分10
5秒前
整箱完成签到 ,获得积分10
5秒前
5秒前
任性子骞应助读书的时候采纳,获得10
6秒前
zhonglv7应助读书的时候采纳,获得10
6秒前
zhonglv7应助读书的时候采纳,获得10
6秒前
zhonglv7应助读书的时候采纳,获得10
6秒前
HOAN应助读书的时候采纳,获得30
6秒前
zhonglv7应助读书的时候采纳,获得10
6秒前
Zdh同学完成签到,获得积分10
6秒前
豌豆射手完成签到,获得积分20
6秒前
KK发布了新的文献求助10
6秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012