Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 物理 有机化学 无机化学 燃料电池
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
badgerwithfisher完成签到,获得积分10
刚刚
1秒前
打打应助冷彬采纳,获得10
1秒前
1秒前
Rewi_Zhang完成签到,获得积分10
1秒前
2秒前
3秒前
左丘世立发布了新的文献求助10
3秒前
勤恳的糖豆完成签到,获得积分10
3秒前
王丽雅完成签到,获得积分20
4秒前
所所应助Alisa采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
刻苦的安白完成签到,获得积分10
5秒前
5秒前
cl发布了新的文献求助30
5秒前
李健应助顽强的娃娃采纳,获得10
5秒前
5秒前
mmmooo完成签到,获得积分10
6秒前
6秒前
6秒前
冬灵完成签到,获得积分10
6秒前
Qingchen发布了新的文献求助10
6秒前
7秒前
seven发布了新的文献求助10
7秒前
7秒前
8秒前
甜美孤云发布了新的文献求助10
8秒前
laj完成签到,获得积分10
9秒前
冬灵发布了新的文献求助10
9秒前
江林发布了新的文献求助10
9秒前
9秒前
LIn发布了新的文献求助10
10秒前
鱼鱼鱼发布了新的文献求助10
10秒前
10秒前
KKLD发布了新的文献求助10
11秒前
kfuiewfowe发布了新的文献求助30
11秒前
11秒前
跳跳虎完成签到 ,获得积分10
12秒前
单薄夏山关注了科研通微信公众号
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485