Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发呆的小号完成签到 ,获得积分10
刚刚
充电宝应助原本采纳,获得10
2秒前
山260完成签到 ,获得积分10
2秒前
badada完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
伶俐乐菱应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
shadow完成签到,获得积分10
6秒前
sen123完成签到,获得积分10
7秒前
123完成签到,获得积分20
8秒前
9秒前
NATURECATCHER完成签到,获得积分10
9秒前
温暖霸完成签到,获得积分10
9秒前
以筱完成签到,获得积分10
10秒前
NexusExplorer应助崔崔采纳,获得10
10秒前
CipherSage应助Passskd采纳,获得10
14秒前
15秒前
子睿完成签到,获得积分10
15秒前
背后雨柏完成签到 ,获得积分10
15秒前
16秒前
nanana发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
五月初夏完成签到,获得积分10
17秒前
hannah发布了新的文献求助10
20秒前
songvv完成签到,获得积分20
21秒前
哟哟哟完成签到,获得积分10
22秒前
22秒前
wanglejia完成签到,获得积分10
22秒前
从容的雪碧完成签到,获得积分10
22秒前
23秒前
Ac完成签到,获得积分10
23秒前
谦让的莆完成签到 ,获得积分10
23秒前
胡图图完成签到,获得积分0
23秒前
崔崔完成签到,获得积分10
24秒前
敖江风云完成签到,获得积分10
24秒前
浮生若梦完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022