Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 无机化学 有机化学 燃料电池 物理
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
王宽宽宽完成签到,获得积分10
1秒前
1秒前
科研通AI6应助13nnk采纳,获得10
2秒前
程昌盛完成签到,获得积分10
2秒前
Aprilapple发布了新的文献求助10
2秒前
3秒前
华仔应助一十六采纳,获得10
3秒前
3秒前
完美世界应助王彦林采纳,获得10
3秒前
去玩儿完成签到,获得积分20
4秒前
4秒前
王宽宽宽发布了新的文献求助10
4秒前
lwq发布了新的文献求助10
4秒前
Grace完成签到,获得积分10
5秒前
华仔应助YaHaa采纳,获得10
6秒前
滕可燕发布了新的文献求助10
6秒前
爆米花应助陈甜甜采纳,获得10
7秒前
摆烂小鱼鱼完成签到 ,获得积分10
7秒前
Lucas应助韩麒嘉采纳,获得10
7秒前
7秒前
7秒前
8秒前
Niuniu完成签到,获得积分10
8秒前
裴裴驳回了珏晴应助
8秒前
9秒前
9秒前
9秒前
9秒前
Aprilapple完成签到,获得积分10
9秒前
10秒前
song发布了新的文献求助10
10秒前
兴奋的发卡完成签到 ,获得积分10
11秒前
自觉翠安应助qiuxiali123采纳,获得10
11秒前
13秒前
hezhuyou完成签到,获得积分20
13秒前
飞乐扣完成签到 ,获得积分10
13秒前
buno应助屈昭阳采纳,获得10
13秒前
优美的觅珍完成签到,获得积分20
13秒前
冯佳祥发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836