Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data

二氧化硫 气体扩散 环境科学 扩散 二氧化碳 环境化学 废物管理 石油工程 化学 工程类 化学工程 热力学 物理 有机化学 无机化学 燃料电池
作者
Yuchen Wang,Zhengshan Luo,Jihao Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:901: 166506-166506 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.166506
摘要

Toxic heavy gas sulfur dioxide (SO2) is a specific life and environmental hazard. Predicting the diffusion of SO2 has become a research focus in fields such as environmental and safety studies. However, traditional methods, such as kinetic models, cannot balance precision and time. Thus, they do not meet the needs of emergency decision-making. Deep learning (DL) models are emerging as a highly regarded solution, providing faster and more accurate predictions of gas concentrations. To this end, this study proposes an innovative hybrid DL model, the parallel-connected convolutional neural network-gated recurrent unit (PC CNN-GRU). This model utilizes two CNNs connected in parallel to process gas release and meteorological datasets, enabling the automatic extraction of high-dimensional data features and handling of long-term temporal dependencies through the GRU. The proposed model demonstrates good performance (RMSE, MAE, and R2 of 20.1658, 10.9158, and 0.9288, respectively) with real data from the Project Prairie Grass (PPG) case. Meanwhile, to address the issue of limited availability of raw data, in this study, time series generative adversarial network (TimeGAN) are introduced for SO2 diffusion studies for the first time, and their effectiveness is verified. To enhance the practicality of the research, the contribution of drivers to SO2 diffusion is quantified through the utilization of the permutation importance (PIMP) and Sobol' method. Additionally, the maximum safe distance downwind under various conditions is visualized based on the SO2 toxicity endpoint concentration. The results of the analyses can provide a scientific basis for relevant decisions and measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
una完成签到 ,获得积分10
刚刚
刚刚
口香糖探长完成签到 ,获得积分10
刚刚
ldy发布了新的文献求助10
1秒前
yy发布了新的文献求助10
1秒前
shangchen发布了新的文献求助10
1秒前
科研通AI2S应助lily采纳,获得10
1秒前
小蘑菇应助碧蓝青梦采纳,获得10
1秒前
走过的风发布了新的文献求助10
1秒前
2秒前
2秒前
JamesPei应助悲凉的雪珍采纳,获得10
3秒前
伶俐悟空发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
suxiang应助Adam采纳,获得10
5秒前
了一李发布了新的文献求助20
5秒前
ZZZZZ完成签到,获得积分10
5秒前
5秒前
星辰大海应助俏皮的以晴采纳,获得10
6秒前
asd2221发布了新的文献求助10
6秒前
VIVA发布了新的文献求助10
7秒前
7秒前
inn发布了新的文献求助10
7秒前
7秒前
LLLLLLLL发布了新的文献求助10
8秒前
wanci应助小懒虫采纳,获得20
8秒前
8秒前
sharkmelon发布了新的文献求助10
9秒前
善学以致用应助优美静芙采纳,获得10
9秒前
Fu完成签到,获得积分10
9秒前
我是老大应助Georgelee采纳,获得10
9秒前
9秒前
g_f完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271