Structured Knowledge Distillation for Accurate and Efficient Object Detection

蒸馏 像素 计算机科学 人工智能 对象(语法) 关系(数据库) 目标检测 分割 模式识别(心理学) 特征提取 机器学习 计算机视觉 数据挖掘 色谱法 化学
作者
Linfeng Zhang,Kaisheng Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 15706-15724 被引量:14
标识
DOI:10.1109/tpami.2023.3300470
摘要

Knowledge distillation, which aims to transfer the knowledge learned by a cumbersome teacher model to a lightweight student model, has become one of the most popular and effective techniques in computer vision. However, many previous knowledge distillation methods are designed for image classification and fail in more challenging tasks such as object detection. In this paper, we first suggest that the failure of knowledge distillation on object detection is mainly caused by two reasons: (1) the imbalance between pixels of foreground and background and (2) lack of knowledge distillation on the relation among different pixels. Then, we propose a structured knowledge distillation scheme, including attention-guided distillation and non-local distillation to address the two issues, respectively. Attention-guided distillation is proposed to find the crucial pixels of foreground objects with an attention mechanism and then make the students take more effort to learn their features. Non-local distillation is proposed to enable students to learn not only the feature of an individual pixel but also the relation between different pixels captured by non-local modules. Experimental results have demonstrated the effectiveness of our method on thirteen kinds of object detection models with twelve comparison methods for both object detection and instance segmentation. For instance, Faster RCNN with our distillation achieves 43.9 mAP on MS COCO2017, which is 4.1 higher than the baseline. Additionally, we show that our method is also beneficial to the robustness and domain generalization ability of detectors. Codes and model weights have been released on GitHub

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mtoc发布了新的文献求助10
2秒前
2秒前
2秒前
jinze完成签到,获得积分10
2秒前
3秒前
3秒前
菠萝Vicky完成签到,获得积分10
4秒前
黑马王子发布了新的文献求助10
4秒前
4秒前
5秒前
星辰大海应助无心的闭月采纳,获得10
5秒前
艾莉完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
racill发布了新的文献求助10
7秒前
敏敏发布了新的文献求助10
8秒前
菠萝Vicky发布了新的文献求助10
8秒前
8秒前
迷路尔容完成签到,获得积分10
9秒前
wzg666发布了新的文献求助10
9秒前
科研通AI6应助黑马王子采纳,获得10
10秒前
渊_发布了新的文献求助10
10秒前
10秒前
要开心吖完成签到 ,获得积分10
11秒前
11秒前
13秒前
小李发布了新的文献求助10
13秒前
学术小白发布了新的文献求助10
13秒前
酷波er应助迁湾采纳,获得10
13秒前
小羊完成签到 ,获得积分10
14秒前
WANJCE发布了新的文献求助10
14秒前
小白发布了新的文献求助10
15秒前
Shan完成签到 ,获得积分10
15秒前
耍酷的甜瓜完成签到,获得积分10
15秒前
15秒前
16秒前
熊建华完成签到,获得积分10
16秒前
花卷发布了新的文献求助10
16秒前
小菜一碟关注了科研通微信公众号
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937