Structured Knowledge Distillation for Accurate and Efficient Object Detection

蒸馏 像素 计算机科学 人工智能 对象(语法) 关系(数据库) 目标检测 分割 模式识别(心理学) 特征提取 机器学习 计算机视觉 数据挖掘 色谱法 化学
作者
Linfeng Zhang,Kaisheng Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 15706-15724 被引量:14
标识
DOI:10.1109/tpami.2023.3300470
摘要

Knowledge distillation, which aims to transfer the knowledge learned by a cumbersome teacher model to a lightweight student model, has become one of the most popular and effective techniques in computer vision. However, many previous knowledge distillation methods are designed for image classification and fail in more challenging tasks such as object detection. In this paper, we first suggest that the failure of knowledge distillation on object detection is mainly caused by two reasons: (1) the imbalance between pixels of foreground and background and (2) lack of knowledge distillation on the relation among different pixels. Then, we propose a structured knowledge distillation scheme, including attention-guided distillation and non-local distillation to address the two issues, respectively. Attention-guided distillation is proposed to find the crucial pixels of foreground objects with an attention mechanism and then make the students take more effort to learn their features. Non-local distillation is proposed to enable students to learn not only the feature of an individual pixel but also the relation between different pixels captured by non-local modules. Experimental results have demonstrated the effectiveness of our method on thirteen kinds of object detection models with twelve comparison methods for both object detection and instance segmentation. For instance, Faster RCNN with our distillation achieves 43.9 mAP on MS COCO2017, which is 4.1 higher than the baseline. Additionally, we show that our method is also beneficial to the robustness and domain generalization ability of detectors. Codes and model weights have been released on GitHub
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc应助猪皮king采纳,获得20
2秒前
3秒前
明朗完成签到 ,获得积分10
4秒前
5秒前
所所应助WD采纳,获得10
5秒前
深情安青应助ZSWAA采纳,获得10
7秒前
华仔应助尺素寸心采纳,获得10
8秒前
青衣北风发布了新的文献求助10
9秒前
小马甲应助魔幻宛白采纳,获得10
9秒前
9秒前
wr1919发布了新的文献求助30
9秒前
11秒前
12秒前
12秒前
带虾的烧麦完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
马户的崛起完成签到,获得积分10
14秒前
15秒前
无情寒荷发布了新的文献求助10
15秒前
小豆豆应助艳子采纳,获得10
15秒前
16秒前
16秒前
simon发布了新的文献求助10
17秒前
12完成签到,获得积分10
17秒前
WD发布了新的文献求助10
17秒前
wxy发布了新的文献求助10
18秒前
魔幻宛白发布了新的文献求助10
19秒前
ZSWAA发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
flywo发布了新的文献求助10
23秒前
26秒前
ZSWAA完成签到,获得积分10
26秒前
Hello应助shinn采纳,获得30
27秒前
simon完成签到,获得积分10
27秒前
李健应助flywo采纳,获得10
27秒前
猪猪hero应助热心小松鼠采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450