亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structured Knowledge Distillation for Accurate and Efficient Object Detection

蒸馏 像素 计算机科学 人工智能 对象(语法) 关系(数据库) 目标检测 分割 模式识别(心理学) 特征提取 机器学习 计算机视觉 数据挖掘 色谱法 化学
作者
Linfeng Zhang,Kaisheng Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 15706-15724 被引量:14
标识
DOI:10.1109/tpami.2023.3300470
摘要

Knowledge distillation, which aims to transfer the knowledge learned by a cumbersome teacher model to a lightweight student model, has become one of the most popular and effective techniques in computer vision. However, many previous knowledge distillation methods are designed for image classification and fail in more challenging tasks such as object detection. In this paper, we first suggest that the failure of knowledge distillation on object detection is mainly caused by two reasons: (1) the imbalance between pixels of foreground and background and (2) lack of knowledge distillation on the relation among different pixels. Then, we propose a structured knowledge distillation scheme, including attention-guided distillation and non-local distillation to address the two issues, respectively. Attention-guided distillation is proposed to find the crucial pixels of foreground objects with an attention mechanism and then make the students take more effort to learn their features. Non-local distillation is proposed to enable students to learn not only the feature of an individual pixel but also the relation between different pixels captured by non-local modules. Experimental results have demonstrated the effectiveness of our method on thirteen kinds of object detection models with twelve comparison methods for both object detection and instance segmentation. For instance, Faster RCNN with our distillation achieves 43.9 mAP on MS COCO2017, which is 4.1 higher than the baseline. Additionally, we show that our method is also beneficial to the robustness and domain generalization ability of detectors. Codes and model weights have been released on GitHub
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
从容的招牌完成签到,获得积分10
54秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
枯叶蝶完成签到 ,获得积分10
2分钟前
嘟嘟完成签到 ,获得积分10
2分钟前
zhongyaosyj完成签到,获得积分10
2分钟前
XIN完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助TianY天翊采纳,获得10
3分钟前
李健应助炙热的千亦采纳,获得10
3分钟前
3分钟前
TianY天翊发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
TianY天翊完成签到,获得积分10
4分钟前
夏花般灿烂完成签到,获得积分10
4分钟前
科研通AI6应助ryf采纳,获得10
4分钟前
4分钟前
Funnymudpee发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
ryf发布了新的文献求助10
5分钟前
xxxxxxh发布了新的文献求助30
5分钟前
xxxxxxh完成签到,获得积分10
5分钟前
5分钟前
Dr发布了新的文献求助10
5分钟前
马宁婧完成签到 ,获得积分10
5分钟前
Dr完成签到,获得积分10
5分钟前
六六完成签到 ,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
虚心的靖仇完成签到,获得积分20
6分钟前
孝陵卫黑旋风完成签到,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324080
求助须知:如何正确求助?哪些是违规求助? 4465100
关于积分的说明 13894130
捐赠科研通 4356903
什么是DOI,文献DOI怎么找? 2393083
邀请新用户注册赠送积分活动 1386580
关于科研通互助平台的介绍 1356862