Dynamic Surface Reconstruction of Amphoteric Metal (Zn, Al) Doped Cu2O for Efficient Electrochemical CO2 Reduction to C2+ Products

双金属片 催化作用 电化学 材料科学 氧化还原 兴奋剂 金属 无机化学 法拉第效率 浸出(土壤学) 电极 化学工程 化学 物理化学 冶金 生物化学 环境科学 光电子学 土壤科学 土壤水分 工程类
作者
Yufei Jia,Yunxuan Ding,Tao Song,Yunlong Xu,Yaqing Li,Lele Duan,Fei Li,Licheng Sun,Ke Fan
出处
期刊:Advanced Science [Wiley]
卷期号:10 (28) 被引量:39
标识
DOI:10.1002/advs.202303726
摘要

Abstract The recognition of the surface reconstruction of the catalysts during electrochemical CO 2 reduction (CO2RR) is essential for exploring and comprehending active sites. Although the superior performance of Cu–Zn bimetallic sites toward multicarbon C 2+ products has been established, the dynamic surface reconstruction has not been fully understood. Herein, Zn‐doped Cu 2 O nano‐octahedrons are used to investigate the effect of the dynamic stability by the leaching and redeposition on CO2RR. Correlative characterizations confirm the Zn leaching from Zn‐doped Cu 2 O, which is redeposited at the surface of the catalysts, leading to dynamic stability and abundant Cu–Zn bimetallic sites at the surface. The reconstructed Zn‐doped Cu 2 O catalysts achieve a high Faradaic efficiency (FE) of C 2+ products (77% at –1.1 V versus reversible hydrogen electrode (RHE)). Additionally, similar dynamic stability is also discovered in Al‐doped Cu 2 O for CO2RR, proving its universality in amphoteric metal‐doped catalysts. Mechanism analyses reveal that the OHC–CHO pathway can be the C–C coupling processes on bare Cu 2 O and Zn‐doped Cu 2 O, and the introduction of Zn to Cu can efficiently lower the energy barrier for CO2RR to C 2 H 4 . This research provides profound insight into unraveling surface dynamic reconstruction of amphoteric metal‐containing electrocatalysts and can guide rational design of the high‐performance electrocatalysts for CO2RR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆滑的铁勺完成签到,获得积分10
刚刚
刚刚
刚刚
zhangting完成签到,获得积分10
1秒前
AAAAAAAAAAA完成签到,获得积分10
1秒前
vvvvvvv完成签到,获得积分10
1秒前
1秒前
wanyanjin应助1111采纳,获得10
1秒前
gaos发布了新的文献求助10
2秒前
小吴完成签到,获得积分10
3秒前
迟大猫应助Star1983采纳,获得10
3秒前
chinning完成签到,获得积分10
4秒前
Mon_zh发布了新的文献求助20
4秒前
4秒前
漂亮送终完成签到,获得积分10
4秒前
朴素篮球发布了新的文献求助10
5秒前
天才完成签到 ,获得积分10
5秒前
不喝可乐发布了新的文献求助10
5秒前
6秒前
皮尤尤发布了新的文献求助10
6秒前
7秒前
道中道完成签到,获得积分10
8秒前
8秒前
知之然完成签到,获得积分10
8秒前
研友_n2QP2L完成签到,获得积分10
8秒前
Lucas应助安静听白采纳,获得10
8秒前
CC发布了新的文献求助10
8秒前
星辰大海应助系统提示采纳,获得10
9秒前
9秒前
sss完成签到,获得积分10
9秒前
9秒前
板凳完成签到,获得积分10
10秒前
单纯访枫发布了新的文献求助30
10秒前
bin0920发布了新的文献求助10
10秒前
aaaaaa完成签到,获得积分10
11秒前
tangsuyun完成签到,获得积分20
11秒前
MADKAI发布了新的文献求助50
11秒前
大方小白完成签到,获得积分10
11秒前
xiaokezhang发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678