Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins

机器学习 地表径流 支持向量机 水流 人工智能 极限学习机 流域 计算机科学 亚热带 梯度升压 Boosting(机器学习) 回归 Lasso(编程语言) 环境科学 气候学 随机森林 数学 人工神经网络 地质学 统计 地图学 地理 生态学 生物 万维网
作者
H. W. Yu,Qichun Yang
出处
期刊:Water [MDPI AG]
卷期号:16 (15): 2199-2199
标识
DOI:10.3390/w16152199
摘要

Machine learning models’ performance in simulating monthly rainfall–runoff in subtropical regions has not been sufficiently investigated. In this study, we evaluate the performance of six widely used machine learning models, including Long Short-Term Memory Networks (LSTMs), Support Vector Machines (SVMs), Gaussian Process Regression (GPR), LASSO Regression (LR), Extreme Gradient Boosting (XGB), and the Light Gradient Boosting Machine (LGBM), against a rainfall–runoff model (WAPABA model) in simulating monthly streamflow across three subtropical sub-basins of the Pearl River Basin (PRB). The results indicate that LSTM generally demonstrates superior capability in simulating monthly streamflow than the other five machine learning models. Using the streamflow of the previous month as an input variable improves the performance of all the machine learning models. When compared with the WAPABA model, LSTM demonstrates better performance in two of the three sub-basins. For simulations in wet seasons, LSTM shows slightly better performance than the WAPABA model. Overall, this study confirms the suitability of machine learning methods in rainfall–runoff modeling at the monthly scale in subtropical basins and proposes an effective strategy for improving their performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一树梨花白完成签到,获得积分20
1秒前
1秒前
墨旱莲完成签到,获得积分10
1秒前
BareBear应助zzrg采纳,获得10
1秒前
tangshijun发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
冷艳的灭龙完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得20
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Wolfgang发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助四夕水窖采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ziptip完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
happyccch发布了新的文献求助10
2秒前
哈比人linling完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
孤独的无血完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得20
3秒前
Zzz完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553