This research aims to improve the performance and economics of fuel cell hybrid electric vehicles (FCHEVs), validated and established by introducing an innovative energy management strategy (EMS) based on a speed-predictive fusion model. Firstly, a mixed prediction model was built based on BiLSTM, TCN, and Self-attention (SA) mechanism to accurately search, capture and fuse multi-granularity features in time series. Then, Harris-Hawk Optimization (HHO) was used to optimize the dropout rate and model learning rate of the combined BiLSTM-TCN-SA time series model to improve the prediction accuracy and generalization ability of the model. Finally, stochastic model predictive control was combined with BiLSTM-TCN-SA to form SMPC-NSGA III algorithm, which was used for multi-objective optimization of fuel economy, fuel cell durability and battery durability. In this study, the effectiveness of the proposed strategy was verified under the condition of CLTC-P driving cycle. The experimental results showed that RMSE and R2 of HHO-BiLSTM-TCN-SA velocity prediction model are 1.169 and 0.998, respectively. In addition, the output of the model is within the confidence interval of 97.5% of the real speed, and there is no significant difference, which is statistically significant. Under the SMPC-NSGA III strategy, the average efficiency of the fuel cell was increased by 12% and 1% respectively.