生态系统
环境科学
蒸汽压差
大气科学
陆地生态系统
生长季节
气候变化
初级生产
生产力
涡度相关法
生态学
气候学
蒸腾作用
光合作用
生物
经济
植物
宏观经济学
地质学
作者
Yan Chen,Guiling Wang,Anji Seth
摘要
Abstract Temperature and water stress are important factors limiting the gross primary productivity (GPP) in terrestrial ecosystems, yet the extent of their influence across ecosystems remains uncertain. This study examines how surface air temperature, soil water availability (SWA) and vapor pressure deficit (VPD) influence ecosystem light use efficiency (LUE), a critical metric for assessing GPP, across different ecosystems and climatic zones at 80 flux tower sites based on in situ measurements and data assimilation products. Results indicate that LUE increases with temperature in spring, with higher correlation coefficients in colder regions (0.79–0.82) than in warmer regions (0.68–0.78). LUE reaches a plateau earlier in the season in warmer regions. LUE variations in summer are mainly driven by SWA, exhibiting a positive correlation indicative of a water‐limited regime. The relationship between the daily LUE and daytime temperature shows a clear seasonal hysteresis at many sites, with a higher LUE in spring than in fall under the same temperature, likely resulting from younger leaves being more efficient in photosynthesis. Drought stress influences LUE through SWA in all ranges of water availability; VPD variation under moderate conditions does not have a clear influence on LUE, but extremely high VPD (exceeding the threshold of 1.6 kPa, often observed during extreme drought‐heat events) causes a dramatic reduction of LUE. Our findings provide insight into how ecosystem productivities respond to climate variability and how they may change under the influence of more frequent and severe heat and drought events projected for the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI