Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

复合数 复合材料 材料科学
作者
Mengzhen Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier BV]
卷期号:49: 101988-101988 被引量:28
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助jinwenqi采纳,获得10
刚刚
刚刚
1秒前
今后应助呆呆要努力采纳,获得10
1秒前
班班发布了新的文献求助10
2秒前
zhangxh43发布了新的文献求助10
2秒前
3秒前
11发布了新的文献求助10
3秒前
3秒前
CipherSage应助banksy采纳,获得10
3秒前
4秒前
Thea发布了新的文献求助10
4秒前
zkz发布了新的文献求助10
4秒前
5秒前
5秒前
congyjs发布了新的文献求助10
5秒前
希望天下0贩的0应助HelloFM采纳,获得10
6秒前
missjucinda发布了新的文献求助20
6秒前
英俊qiang发布了新的文献求助10
6秒前
常姗发布了新的文献求助10
7秒前
酷波er应助清颜采纳,获得10
7秒前
8秒前
wen完成签到,获得积分10
9秒前
开放的远望关注了科研通微信公众号
9秒前
9秒前
Nanyan完成签到,获得积分10
10秒前
嘻嘻嘻应助hiipaige采纳,获得10
10秒前
FashionBoy应助wzg666采纳,获得10
10秒前
zw完成签到,获得积分10
11秒前
蜜蜂发布了新的文献求助10
11秒前
11秒前
共享精神应助congyjs采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
zkz完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
12秒前
丁可心发布了新的文献求助10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955988
求助须知:如何正确求助?哪些是违规求助? 4217823
关于积分的说明 13125631
捐赠科研通 4000379
什么是DOI,文献DOI怎么找? 2189335
邀请新用户注册赠送积分活动 1204433
关于科研通互助平台的介绍 1116326