Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

航空航天 人工神经网络 计算机科学 复合数 人工智能 卷积神经网络 机器学习 材料科学 工程类 算法 航空航天工程
作者
Mingyu Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier]
卷期号:49: 101988-101988 被引量:2
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中香发布了新的文献求助10
1秒前
在水一方应助Jindyla采纳,获得10
2秒前
3秒前
葡萄成熟发布了新的文献求助10
4秒前
4秒前
星陨发布了新的文献求助10
5秒前
GSQ完成签到,获得积分10
6秒前
7秒前
AUK发布了新的文献求助10
7秒前
8秒前
9秒前
Ava应助Schroenius采纳,获得10
9秒前
ydning33发布了新的文献求助10
9秒前
10秒前
爽o发布了新的文献求助10
11秒前
WWW发布了新的文献求助10
12秒前
杰瑞院士完成签到,获得积分10
13秒前
SciGPT应助危机的纸飞机采纳,获得10
14秒前
14秒前
JamesPei应助个性的帽子采纳,获得10
14秒前
oceanao应助星陨采纳,获得10
16秒前
18秒前
古药发布了新的文献求助10
19秒前
葡萄成熟发布了新的文献求助10
21秒前
黎明的第一道曙光完成签到 ,获得积分10
21秒前
lgf完成签到,获得积分10
23秒前
小蘑菇应助曹骏轩采纳,获得10
23秒前
WWW完成签到,获得积分10
23秒前
郝姝姝完成签到,获得积分10
24秒前
古药完成签到,获得积分10
30秒前
NexusExplorer应助权志龙采纳,获得10
30秒前
32秒前
勤恳的若翠完成签到,获得积分10
33秒前
33秒前
34秒前
有魅力荟发布了新的文献求助10
35秒前
35秒前
彭于晏应助wxl采纳,获得10
35秒前
FashionBoy应助爽o采纳,获得10
35秒前
田様应助喜东东采纳,获得10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919