Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

复合数 复合材料 材料科学
作者
Mengzhen Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier]
卷期号:49: 101988-101988 被引量:28
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
皮皮团完成签到,获得积分10
2秒前
丘比特应助芬er采纳,获得10
2秒前
2秒前
传奇3应助shea采纳,获得10
3秒前
顾矜应助林子采纳,获得10
4秒前
lisier发布了新的文献求助10
4秒前
5秒前
ssy完成签到,获得积分10
5秒前
5秒前
丘比特应助大婷子采纳,获得10
7秒前
lou完成签到,获得积分10
7秒前
酷波er应助陈皮软糖采纳,获得10
7秒前
李健的小迷弟应助xhz采纳,获得10
8秒前
研友_VZG7GZ应助天才包采纳,获得10
8秒前
cheezle完成签到,获得积分10
8秒前
8秒前
不冰淇淋完成签到,获得积分10
8秒前
不行就相比较完成签到,获得积分10
9秒前
palace完成签到,获得积分10
9秒前
9秒前
10秒前
上官若男应助大气的寇采纳,获得10
11秒前
Hello应助小小的手心采纳,获得10
11秒前
11秒前
smile完成签到,获得积分20
11秒前
ii完成签到,获得积分10
12秒前
12秒前
光亮的安双完成签到 ,获得积分10
13秒前
cheezle发布了新的文献求助10
13秒前
tang发布了新的文献求助10
13秒前
研知之发布了新的文献求助10
13秒前
英俊的铭应助妮娜采纳,获得10
14秒前
14秒前
小羊打嗝发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
唐一峰发布了新的文献求助30
16秒前
Zx_1993应助合适的谷雪采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156