Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

复合数 复合材料 材料科学
作者
Mengzhen Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier BV]
卷期号:49: 101988-101988 被引量:19
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z60ObL完成签到,获得积分10
刚刚
1秒前
1365发布了新的文献求助10
1秒前
1秒前
Questa_Qin完成签到,获得积分10
2秒前
笑笑丶不爱笑完成签到,获得积分10
2秒前
高兴的羊发布了新的文献求助10
2秒前
宝海青完成签到,获得积分10
2秒前
炎炎夏无声完成签到 ,获得积分10
3秒前
3秒前
自由伊完成签到,获得积分10
3秒前
田様应助redflower采纳,获得30
4秒前
英姑应助刘媛采纳,获得10
4秒前
Gao发布了新的文献求助10
5秒前
万物更始完成签到,获得积分10
5秒前
朴实的青雪完成签到,获得积分10
5秒前
科目三应助獭兔采纳,获得10
6秒前
小小邹完成签到,获得积分10
6秒前
Jasper应助个性梦蕊采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
Werner完成签到 ,获得积分10
7秒前
xiaoxia完成签到,获得积分10
7秒前
臭屁大王完成签到,获得积分10
7秒前
jj完成签到,获得积分10
8秒前
希望天下0贩的0应助Alyssa采纳,获得10
8秒前
不羁的红枫叶完成签到 ,获得积分10
8秒前
顺利毕业完成签到,获得积分10
9秒前
嘻嘻嘻发布了新的文献求助10
9秒前
Hey发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
fjdlasdjflo823完成签到,获得积分20
12秒前
12秒前
三问白完成签到,获得积分10
13秒前
13秒前
Lucas完成签到,获得积分10
13秒前
刘媛发布了新的文献求助10
14秒前
自然妙旋完成签到,获得积分10
15秒前
科研通AI2S应助飞快的诗槐采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874