Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

复合数 复合材料 材料科学
作者
Mengzhen Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier]
卷期号:49: 101988-101988 被引量:6
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoshiwen完成签到,获得积分10
刚刚
落寞的觅柔完成签到,获得积分10
2秒前
3秒前
LUNWENREQUEST发布了新的文献求助10
3秒前
4秒前
5秒前
123cxj完成签到,获得积分10
8秒前
CO2发布了新的文献求助10
8秒前
summer发布了新的文献求助10
8秒前
9秒前
Xx.发布了新的文献求助10
9秒前
大大关注了科研通微信公众号
9秒前
稚祎完成签到 ,获得积分10
9秒前
9秒前
CodeCraft应助东东采纳,获得10
10秒前
11秒前
叽里咕噜完成签到 ,获得积分10
12秒前
田様应助zccc采纳,获得10
13秒前
隐形的雁完成签到,获得积分10
13秒前
追寻的秋玲完成签到,获得积分10
14秒前
李繁蕊发布了新的文献求助10
14秒前
15秒前
舒心的紫雪完成签到 ,获得积分10
16秒前
16秒前
18秒前
18秒前
19秒前
不上课不行完成签到,获得积分10
20秒前
再干一杯完成签到,获得积分10
20秒前
21秒前
汉堡包应助rudjs采纳,获得10
22秒前
22秒前
zsyzxb发布了新的文献求助10
23秒前
东东发布了新的文献求助10
23秒前
zena92发布了新的文献求助10
24秒前
锤子米完成签到,获得积分10
24秒前
24秒前
赤练仙子完成签到,获得积分10
26秒前
MnO2fff应助zsyzxb采纳,获得20
29秒前
kingwill应助zsyzxb采纳,获得20
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808