发光
极化(电化学)
稀土
圆极化
材料科学
光电子学
纳米技术
化学
光学
物理
物理化学
冶金
微带线
作者
Na Wang,Ze‐Jiang Xu,Hao‐Fei Ni,Sheng Wang,Hua‐Kai Li,Mei-Ling Ren,Chao Shi,Heng‐Yun Ye,Xiaobin Fu,Yi Zhang,Le‐Ping Miao
标识
DOI:10.1002/anie.202409796
摘要
Out-of-plane polarization is a highly desired property of two-dimensional (2D) ferroelectrics for application in vertical sandwich-type photoferroelectric devices, especially in ultrathin ferroelectronic devices. Nevertheless, despite great advances that have been made in recent years, out-of-plane polarization remains unrealized in the 2D hybrid double perovskite ferroelectric family. Here, from our previous work 2D hybrid double perovskite HQERN ((S3HQ)4EuRb(NO3)8, S3HQ = S-3-hydroxylquinuclidinium), we designed a molecular strategy of F-substitution on organic component to successfully obtain FQERN ((S3FQ)4EuRb(NO3)8, S3FQ = S-3-fluoroquinuclidinium) showing circularly polarized luminescence (CPL) response. Remarkably, compared to the monopolar axis ferroelectric HQERN, FQERN not only shows multiferroicity with the coexistence of multipolar axis ferroelectricity and ferroelasticity but also realizes out-of-plane ferroelectric polarization and a dramatic enhancement of Curie temperature of 94 K. This is mainly due to the introduction of F-substituted organic cations, which leads to a change in orientation and a reduction in crystal lattice void occupancy. Our study demonstrates that F-substitution is an efficient strategy to realize and optimize ferroelectric functional characteristics, giving more possibility of 2D ferroelectric materials for applications in micro-nano optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI