Epitaxial Metal–Organic Framework-Mediated Electron Relay for H2 Detection on Demand

材料科学 外延 继电器 电子 纳米技术 金属有机骨架 金属 光电子学 化学 物理 物理化学 冶金 量子力学 吸附 功率(物理) 图层(电子)
作者
Sailin Yuan,Shicheng Zeng,Yan Hu,Weixin Kong,Huanjing Yang,Peng Gong,Taishi Xiao,Huadong Wang,Hengcheng Wan,Qiaowei Li,Zhengzong Sun
出处
期刊:ACS Nano [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsnano.4c05206
摘要

Hydrogen is regarded as one of the most promising clean substitutes for fossil fuels toward a carbon-zero society. However, the safety management of the upcoming hydrogen energy infrastructure has not been fully prepared, in contrast to the well-established natural gas and gasoline systems. On the frontline is the guard post of hydrogen detectors, which need to be deployed on various structural surfaces and environmental conditions. Conventional hydrogen detectors are usually bulky and environmentally sensitive, limiting their flexible and conformal deployment to various locations, such as pipelines and valves. Herein, we demonstrate the successful synthesis of a palladium-modified epitaxial metal-organic framework (MOF) on single-layer graphene to fabricate a heterostructure material (Epi-MOF-Pd). Device based on the heterostructure demonstrates high sensitivity toward low- concentration H2 (155% resistance response to 1% H2 within 12 s, a theoretical detection limit of 3 ppm). The 25 nm epitaxial MOF acquires electrons from the Pd nanoparticles after the trace amount of H2 is chemically adsorbed and further relays the electrons to the highly conductive graphene. The Epi-MOF-Pd is both flexible and enduring, and maintains stable detection over 10 000 bending cycles. Through photolithography, device arrays with a density of 3000 units/cm2 are successfully fabricated. This versatile material provides a prospective avenue for the mass production of high-performance chemical-sensitive electronics, which could significantly improve the hydrogen safety management on demand.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白betty完成签到,获得积分10
1秒前
1秒前
明月照我程完成签到,获得积分10
1秒前
1秒前
2秒前
酷波er应助雷马采纳,获得10
3秒前
共享精神应助Toivo采纳,获得10
3秒前
唠叨的富发布了新的文献求助10
3秒前
chen关注了科研通微信公众号
3秒前
3秒前
ew.发布了新的文献求助10
3秒前
LYYYY完成签到 ,获得积分10
3秒前
3秒前
3秒前
Muddle完成签到,获得积分10
4秒前
叶不言发布了新的文献求助10
4秒前
天天快乐应助徐彬荣采纳,获得10
5秒前
DamienC发布了新的文献求助10
5秒前
恋空完成签到 ,获得积分10
5秒前
缓慢的孤兰完成签到,获得积分10
5秒前
5秒前
随便起个名完成签到,获得积分10
6秒前
俊逸水桃发布了新的文献求助10
6秒前
完美钥匙发布了新的文献求助10
7秒前
8秒前
yunfulu29完成签到,获得积分10
8秒前
细心的易文完成签到 ,获得积分10
8秒前
HAL发布了新的文献求助10
8秒前
cherish给cherish的求助进行了留言
8秒前
8秒前
暴走小面包完成签到 ,获得积分10
9秒前
Max完成签到,获得积分10
9秒前
9秒前
万能图书馆应助喝一杯采纳,获得10
9秒前
传奇3应助jsh采纳,获得10
9秒前
9秒前
火星上的摩托完成签到 ,获得积分10
9秒前
湘莲完成签到 ,获得积分10
10秒前
榕俊完成签到,获得积分10
10秒前
隐形曼青应助银鱼在游采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748