刚度(电磁)
自愈水凝胶
生物
细胞信号
细胞生物学
信号转导
生物物理学
材料科学
复合材料
高分子化学
作者
Jiapeng Yang,Peng Wang,Yu Shrike Zhang,Man Zhang,Qian Sun,Huiyan Chen,Liang Dong,Zhiqin Chu,Bin Xue,Wouter D. Hoff,Changsheng Zhao,Wei Wang,Qiang Wei,Yi Cao
标识
DOI:10.1016/j.stem.2024.09.016
摘要
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent. Strikingly, at certain frequencies, cellular traction forces exceed those on static substrates 4-fold stiffer, challenging the established molecular clutch model. We discover that the discrepancy between the rapid adaptation of traction forces and the slower deactivation of mechanotransduction signaling proteins results in their accumulation, thereby enhancing long-term cellular traction in dynamic settings. Consequently, we propose a new model that melds immediate mechanosensing with extended mechanical signaling. Our study underscores the significance of dynamic rigidity in the development of synthetic biomaterials, emphasizing the importance of considering both immediate and prolonged cellular responses.
科研通智能强力驱动
Strongly Powered by AbleSci AI