亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aggressiveness classification of clear cell renal cell carcinoma using registration‐independent radiology‐pathology correlation learning

肾透明细胞癌 医学 放射科 肾细胞癌 外科病理学 活检 病理 肾脏病理学 人工智能 内科学 计算机科学
作者
Indrani Bhattacharya,Karin Stacke,Emily Chan,Jeong Hoon Lee,Justin R. Tse,Tie Liang,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17476
摘要

Abstract Background Renal cell carcinoma (RCC) is a common cancer that varies in clinical behavior. Clear cell RCC (ccRCC) is the most common RCC subtype, with both aggressive and indolent manifestations. Indolent ccRCC is often low‐grade without necrosis and can be monitored without treatment. Aggressive ccRCC is often high‐grade and can cause metastasis and death if not promptly detected and treated. While most RCCs are detected on computed tomography (CT) scans, aggressiveness classification is based on pathology images acquired from invasive biopsy or surgery. Purpose CT imaging‐based aggressiveness classification would be an important clinical advance, as it would facilitate non‐invasive risk stratification and treatment planning. Here, we present a novel machine learning method, Correlated Feature Aggregation By Region (CorrFABR), for CT‐based aggressiveness classification of ccRCC. Methods CorrFABR is a multimodal fusion algorithm that learns from radiology and pathology images, and clinical variables in a clinically‐relevant manner. CorrFABR leverages registration‐independent radiology (CT) and pathology image correlations using features from vision transformer‐based foundation models to facilitate aggressiveness assessment on CT images. CorrFABR consists of three main steps: (a) Feature aggregation where region‐level features are extracted from radiology and pathology images at widely varying image resolutions, (b) Fusion where radiology features correlated with pathology features (pathology‐informed CT biomarkers) are learned, and (c) Classification where the learned pathology‐informed CT biomarkers, together with clinical variables of tumor diameter, gender, and age, are used to distinguish aggressive from indolent ccRCC using multi‐layer perceptron‐based classifiers. Pathology images are only required in the first two steps of CorrFABR, and are not required in the prediction module. Therefore, CorrFABR integrates information from CT images, pathology images, and clinical variables during training, but for inference, it relies solely on CT images and clinical variables, ensuring its clinical applicability. CorrFABR was trained with heterogenous, publicly‐available data from 298 ccRCC tumors (136 indolent tumors, 162 aggressive tumors) in a five‐fold cross‐validation setup and evaluated on an independent test set of 74 tumors with a balanced distribution of aggressive and indolent tumors. Ablation studies were performed to test the utility of each component of CorrFABR. Results CorrFABR outperformed the other classification methods, achieving an ROC‐AUC (area under the curve) of 0.855 ± 0.0005 (95% confidence interval: 0.775, 0.947), F1‐score of 0.793 ± 0.029, sensitivity of 0.741 ± 0.058, and specificity of 0.876 ± 0.032 in classifying ccRCC as aggressive or indolent subtypes. It was found that pathology‐informed CT biomarkers learned through registration‐independent correlation learning improves classification performance over using CT features alone, irrespective of the kind of features or the classification model used. Tumor diameter, gender, and age provide complementary clinical information, and integrating pathology‐informed CT biomarkers with these clinical variables further improves performance. Conclusion CorrFABR provides a novel method for CT‐based aggressiveness classification of ccRCC by enabling the identification of pathology‐informed CT biomarkers, and integrating them with clinical variables. CorrFABR enables learning of these pathology‐informed CT biomarkers through a novel registration‐independent correlation learning module that considers unaligned radiology and pathology images at widely varying image resolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
4秒前
4秒前
杨桃完成签到,获得积分10
6秒前
9秒前
wang发布了新的文献求助10
10秒前
柚子完成签到 ,获得积分10
11秒前
笨笨完成签到,获得积分10
12秒前
大佬鼠鼠发布了新的文献求助30
15秒前
科研通AI2S应助喜新厌旧采纳,获得10
16秒前
浮游应助Hhhhhhhhhh采纳,获得10
17秒前
18秒前
24秒前
Bobo发布了新的文献求助10
29秒前
Hello应助Arit采纳,获得10
35秒前
35秒前
36秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
香蕉觅云应助科研通管家采纳,获得10
41秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
42秒前
酷波er应助科研通管家采纳,获得10
42秒前
吴彦祖应助科研通管家采纳,获得10
42秒前
吴彦祖应助科研通管家采纳,获得10
42秒前
吴彦祖应助科研通管家采纳,获得10
42秒前
46秒前
Bobo完成签到,获得积分10
47秒前
50秒前
56秒前
59秒前
浮游应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
zhouxiaoyang发布了新的文献求助10
1分钟前
浮游应助Hhhhhhhhhh采纳,获得10
1分钟前
1分钟前
yy发布了新的文献求助10
1分钟前
所所应助大佬鼠鼠采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297