Aggressiveness classification of clear cell renal cell carcinoma using registration‐independent radiology‐pathology correlation learning

肾透明细胞癌 医学 放射科 肾细胞癌 外科病理学 活检 病理 肾脏病理学 人工智能 内科学 计算机科学
作者
Indrani Bhattacharya,Karin Stacke,Emily Chan,Jeong Hoon Lee,Justin R. Tse,Tie Liang,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17476
摘要

Abstract Background Renal cell carcinoma (RCC) is a common cancer that varies in clinical behavior. Clear cell RCC (ccRCC) is the most common RCC subtype, with both aggressive and indolent manifestations. Indolent ccRCC is often low‐grade without necrosis and can be monitored without treatment. Aggressive ccRCC is often high‐grade and can cause metastasis and death if not promptly detected and treated. While most RCCs are detected on computed tomography (CT) scans, aggressiveness classification is based on pathology images acquired from invasive biopsy or surgery. Purpose CT imaging‐based aggressiveness classification would be an important clinical advance, as it would facilitate non‐invasive risk stratification and treatment planning. Here, we present a novel machine learning method, Correlated Feature Aggregation By Region (CorrFABR), for CT‐based aggressiveness classification of ccRCC. Methods CorrFABR is a multimodal fusion algorithm that learns from radiology and pathology images, and clinical variables in a clinically‐relevant manner. CorrFABR leverages registration‐independent radiology (CT) and pathology image correlations using features from vision transformer‐based foundation models to facilitate aggressiveness assessment on CT images. CorrFABR consists of three main steps: (a) Feature aggregation where region‐level features are extracted from radiology and pathology images at widely varying image resolutions, (b) Fusion where radiology features correlated with pathology features (pathology‐informed CT biomarkers) are learned, and (c) Classification where the learned pathology‐informed CT biomarkers, together with clinical variables of tumor diameter, gender, and age, are used to distinguish aggressive from indolent ccRCC using multi‐layer perceptron‐based classifiers. Pathology images are only required in the first two steps of CorrFABR, and are not required in the prediction module. Therefore, CorrFABR integrates information from CT images, pathology images, and clinical variables during training, but for inference, it relies solely on CT images and clinical variables, ensuring its clinical applicability. CorrFABR was trained with heterogenous, publicly‐available data from 298 ccRCC tumors (136 indolent tumors, 162 aggressive tumors) in a five‐fold cross‐validation setup and evaluated on an independent test set of 74 tumors with a balanced distribution of aggressive and indolent tumors. Ablation studies were performed to test the utility of each component of CorrFABR. Results CorrFABR outperformed the other classification methods, achieving an ROC‐AUC (area under the curve) of 0.855 ± 0.0005 (95% confidence interval: 0.775, 0.947), F1‐score of 0.793 ± 0.029, sensitivity of 0.741 ± 0.058, and specificity of 0.876 ± 0.032 in classifying ccRCC as aggressive or indolent subtypes. It was found that pathology‐informed CT biomarkers learned through registration‐independent correlation learning improves classification performance over using CT features alone, irrespective of the kind of features or the classification model used. Tumor diameter, gender, and age provide complementary clinical information, and integrating pathology‐informed CT biomarkers with these clinical variables further improves performance. Conclusion CorrFABR provides a novel method for CT‐based aggressiveness classification of ccRCC by enabling the identification of pathology‐informed CT biomarkers, and integrating them with clinical variables. CorrFABR enables learning of these pathology‐informed CT biomarkers through a novel registration‐independent correlation learning module that considers unaligned radiology and pathology images at widely varying image resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那兰发布了新的文献求助10
2秒前
2秒前
申承熙完成签到,获得积分10
3秒前
zhuwei发布了新的文献求助10
3秒前
4秒前
852应助北冥有鱼采纳,获得10
4秒前
可怜的游戏完成签到,获得积分20
5秒前
月恒发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
闫闫发布了新的文献求助10
7秒前
科目三应助开朗发卡采纳,获得10
8秒前
Owen应助练习者采纳,获得10
8秒前
9秒前
上海丁辉人应助haveatry采纳,获得10
9秒前
局内人发布了新的文献求助10
10秒前
科研通AI2S应助熊猫盖浇饭采纳,获得10
10秒前
wanci应助微风418采纳,获得10
10秒前
13秒前
耶啵发布了新的文献求助10
13秒前
月恒完成签到,获得积分20
14秒前
甜甜圈完成签到,获得积分10
14秒前
14秒前
15秒前
WATCH发布了新的文献求助30
16秒前
Someone应助YH采纳,获得10
16秒前
16秒前
18秒前
19秒前
Abi完成签到,获得积分10
19秒前
19秒前
万能图书馆应助1206425219密采纳,获得10
19秒前
19秒前
山上雪发布了新的文献求助10
19秒前
ppy完成签到,获得积分10
19秒前
周同学发布了新的文献求助10
19秒前
科目三应助千秋骚年采纳,获得10
20秒前
20秒前
错过发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145513
求助须知:如何正确求助?哪些是违规求助? 2796938
关于积分的说明 7822093
捐赠科研通 2453230
什么是DOI,文献DOI怎么找? 1305516
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464