已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aggressiveness classification of clear cell renal cell carcinoma using registration‐independent radiology‐pathology correlation learning

肾透明细胞癌 医学 放射科 肾细胞癌 外科病理学 活检 病理 肾脏病理学 人工智能 内科学 计算机科学
作者
Indrani Bhattacharya,Karin Stacke,Emily Chan,Jeong Hoon Lee,Justin R. Tse,Tie Liang,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17476
摘要

Abstract Background Renal cell carcinoma (RCC) is a common cancer that varies in clinical behavior. Clear cell RCC (ccRCC) is the most common RCC subtype, with both aggressive and indolent manifestations. Indolent ccRCC is often low‐grade without necrosis and can be monitored without treatment. Aggressive ccRCC is often high‐grade and can cause metastasis and death if not promptly detected and treated. While most RCCs are detected on computed tomography (CT) scans, aggressiveness classification is based on pathology images acquired from invasive biopsy or surgery. Purpose CT imaging‐based aggressiveness classification would be an important clinical advance, as it would facilitate non‐invasive risk stratification and treatment planning. Here, we present a novel machine learning method, Correlated Feature Aggregation By Region (CorrFABR), for CT‐based aggressiveness classification of ccRCC. Methods CorrFABR is a multimodal fusion algorithm that learns from radiology and pathology images, and clinical variables in a clinically‐relevant manner. CorrFABR leverages registration‐independent radiology (CT) and pathology image correlations using features from vision transformer‐based foundation models to facilitate aggressiveness assessment on CT images. CorrFABR consists of three main steps: (a) Feature aggregation where region‐level features are extracted from radiology and pathology images at widely varying image resolutions, (b) Fusion where radiology features correlated with pathology features (pathology‐informed CT biomarkers) are learned, and (c) Classification where the learned pathology‐informed CT biomarkers, together with clinical variables of tumor diameter, gender, and age, are used to distinguish aggressive from indolent ccRCC using multi‐layer perceptron‐based classifiers. Pathology images are only required in the first two steps of CorrFABR, and are not required in the prediction module. Therefore, CorrFABR integrates information from CT images, pathology images, and clinical variables during training, but for inference, it relies solely on CT images and clinical variables, ensuring its clinical applicability. CorrFABR was trained with heterogenous, publicly‐available data from 298 ccRCC tumors (136 indolent tumors, 162 aggressive tumors) in a five‐fold cross‐validation setup and evaluated on an independent test set of 74 tumors with a balanced distribution of aggressive and indolent tumors. Ablation studies were performed to test the utility of each component of CorrFABR. Results CorrFABR outperformed the other classification methods, achieving an ROC‐AUC (area under the curve) of 0.855 ± 0.0005 (95% confidence interval: 0.775, 0.947), F1‐score of 0.793 ± 0.029, sensitivity of 0.741 ± 0.058, and specificity of 0.876 ± 0.032 in classifying ccRCC as aggressive or indolent subtypes. It was found that pathology‐informed CT biomarkers learned through registration‐independent correlation learning improves classification performance over using CT features alone, irrespective of the kind of features or the classification model used. Tumor diameter, gender, and age provide complementary clinical information, and integrating pathology‐informed CT biomarkers with these clinical variables further improves performance. Conclusion CorrFABR provides a novel method for CT‐based aggressiveness classification of ccRCC by enabling the identification of pathology‐informed CT biomarkers, and integrating them with clinical variables. CorrFABR enables learning of these pathology‐informed CT biomarkers through a novel registration‐independent correlation learning module that considers unaligned radiology and pathology images at widely varying image resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩小小完成签到 ,获得积分10
2秒前
10秒前
学渣路过完成签到,获得积分0
13秒前
satisusu完成签到 ,获得积分10
16秒前
搜文献的北北完成签到,获得积分10
18秒前
好巧完成签到,获得积分10
19秒前
22秒前
糯米完成签到 ,获得积分10
24秒前
XING完成签到 ,获得积分10
29秒前
30秒前
30秒前
喂喂发布了新的文献求助10
36秒前
36秒前
一颗滚石发布了新的文献求助20
41秒前
学海行舟完成签到 ,获得积分10
46秒前
56秒前
57秒前
nicenice发布了新的文献求助10
1分钟前
咕噜噜完成签到,获得积分10
1分钟前
闫雪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Simpson完成签到 ,获得积分10
1分钟前
www发布了新的文献求助10
1分钟前
我是老大应助ceeray23采纳,获得20
1分钟前
李爱国应助zzzkyt采纳,获得10
1分钟前
lb001完成签到 ,获得积分10
1分钟前
zzjjyy完成签到,获得积分10
1分钟前
小刘发布了新的文献求助10
1分钟前
1分钟前
zzzkyt完成签到,获得积分10
1分钟前
万能图书馆应助www采纳,获得10
1分钟前
zzzkyt发布了新的文献求助10
1分钟前
Hyh_orz应助onlyan采纳,获得20
1分钟前
1分钟前
1分钟前
霜鸣完成签到,获得积分20
1分钟前
霜鸣发布了新的文献求助10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532047
关于积分的说明 11256141
捐赠科研通 3270918
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216