DCSS-UNet: UNet based on State Space Model for Polyp Segmentation

分割 空格(标点符号) 状态空间 计算机科学 国家(计算机科学) 人工智能 数学 算法 统计 操作系统
作者
Xiuwei Wang,Biyuan Li
标识
DOI:10.54097/6m4zwb07
摘要

Early and accurate segmentation of medical images can provide valuable information for medical treatment. In recent years, the automatic and accurate segmentation of polyps in colonoscopy images has received extensive attention from the research community of artificial intelligence and computer vision. Many researchers have conducted in-depth research on models based on CNN and Transformer. However, CNN have limited ability to model remote dependencies, which makes it challenging to fully utilize semantic information in images. On the other hand, the complexity of the secondary computation poses a challenge to the transformer. Recently, state-space models (SSMS), such as Mamba, have been recognized as a promising approach. They not only show superior performance in remote interaction, but also maintain linear computational complexity. Inspired by Mamba, we propose DCSS-UNet, where we utilize visual state space (VSS) blocks in VMamba to capture a wide range of contextual information. In the Skip connection phase, we propose Skip Connects Feature Attention modules(SFA) to better communicate information from the encoder. In the decoder stage, we innovatively combined the Temporal Fusion Attention Module(TFAM) to effectively fuse the feature information. In addition, we introduced a custom Loss calculation method, Tversky Loss, for the model to achieve faster convergence and improve segmentation along polyp boundaries. Our model was trained on the Kvasir-SEG and CVC-ClinicDB datasets, and validated on datasets Kvasir-SEG, CVC-ColonDB, CVC-300, and ETIS. The results show that the model achieves good segmentation accuracy and generalization performance with a low number of parameters. We are 6.1% ahead in the Kavirs-SEG dataset and 3.1% ahead in the CVC-ClinicDB dataset compared to VM-UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahxb完成签到,获得积分10
3秒前
linjiaxin完成签到,获得积分10
5秒前
uniphoton完成签到,获得积分10
6秒前
6秒前
小蘑菇应助ahxb采纳,获得10
6秒前
赤枫彤云发布了新的文献求助10
6秒前
能干的月光完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Tushar完成签到,获得积分10
7秒前
linjiaxin发布了新的文献求助10
8秒前
May应助露露采纳,获得20
9秒前
思源应助研白采纳,获得10
9秒前
K先生完成签到,获得积分10
9秒前
123关闭了123文献求助
12秒前
和谐之玉发布了新的文献求助200
14秒前
16秒前
17秒前
lili完成签到,获得积分10
18秒前
鱼仔发布了新的文献求助10
19秒前
22秒前
22秒前
研白发布了新的文献求助10
23秒前
皮皮完成签到 ,获得积分10
26秒前
宋子虎发布了新的文献求助10
26秒前
linda关注了科研通微信公众号
27秒前
鱼仔完成签到,获得积分10
29秒前
30秒前
兴奋的定帮完成签到 ,获得积分0
31秒前
赘婿应助刘刘大顺采纳,获得10
32秒前
司空元正完成签到 ,获得积分10
32秒前
Owen应助liuzengzhang666采纳,获得10
32秒前
xiejinhui发布了新的文献求助10
33秒前
雪鸽鸽完成签到,获得积分10
36秒前
传奇3应助xiejinhui采纳,获得10
38秒前
刻苦羽毛完成签到,获得积分10
39秒前
虚心的芹发布了新的文献求助10
39秒前
8R60d8应助您好刘皇叔采纳,获得10
40秒前
40秒前
42秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150