已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DCSS-UNet: UNet based on State Space Model for Polyp Segmentation

分割 空格(标点符号) 状态空间 计算机科学 国家(计算机科学) 人工智能 数学 算法 统计 操作系统
作者
Xiuwei Wang,Biyuan Li
标识
DOI:10.54097/6m4zwb07
摘要

Early and accurate segmentation of medical images can provide valuable information for medical treatment. In recent years, the automatic and accurate segmentation of polyps in colonoscopy images has received extensive attention from the research community of artificial intelligence and computer vision. Many researchers have conducted in-depth research on models based on CNN and Transformer. However, CNN have limited ability to model remote dependencies, which makes it challenging to fully utilize semantic information in images. On the other hand, the complexity of the secondary computation poses a challenge to the transformer. Recently, state-space models (SSMS), such as Mamba, have been recognized as a promising approach. They not only show superior performance in remote interaction, but also maintain linear computational complexity. Inspired by Mamba, we propose DCSS-UNet, where we utilize visual state space (VSS) blocks in VMamba to capture a wide range of contextual information. In the Skip connection phase, we propose Skip Connects Feature Attention modules(SFA) to better communicate information from the encoder. In the decoder stage, we innovatively combined the Temporal Fusion Attention Module(TFAM) to effectively fuse the feature information. In addition, we introduced a custom Loss calculation method, Tversky Loss, for the model to achieve faster convergence and improve segmentation along polyp boundaries. Our model was trained on the Kvasir-SEG and CVC-ClinicDB datasets, and validated on datasets Kvasir-SEG, CVC-ColonDB, CVC-300, and ETIS. The results show that the model achieves good segmentation accuracy and generalization performance with a low number of parameters. We are 6.1% ahead in the Kavirs-SEG dataset and 3.1% ahead in the CVC-ClinicDB dataset compared to VM-UNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣冰棍发布了新的文献求助10
1秒前
88完成签到 ,获得积分10
1秒前
丘比特应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
双黄应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
杳鸢应助科研通管家采纳,获得10
5秒前
CNSSCI完成签到,获得积分10
7秒前
Peng完成签到,获得积分10
8秒前
闪光喵喵发布了新的文献求助10
8秒前
8秒前
菠萝完成签到 ,获得积分10
11秒前
风趣冰棍完成签到,获得积分20
14秒前
NexusExplorer应助ca采纳,获得10
14秒前
18秒前
19秒前
yihua发布了新的文献求助10
19秒前
大辉发布了新的文献求助10
24秒前
呼哈哈发布了新的文献求助10
24秒前
巫紫寒完成签到,获得积分10
25秒前
孙文杰完成签到 ,获得积分10
27秒前
28秒前
28秒前
灵儿发布了新的文献求助10
32秒前
完美不惜发布了新的文献求助10
32秒前
33秒前
汉堡包应助CRane采纳,获得10
35秒前
夏天发布了新的文献求助10
38秒前
白玫瑰发布了新的文献求助10
38秒前
平底锅攻击完成签到 ,获得积分10
39秒前
逆行发布了新的文献求助10
42秒前
42秒前
热心达完成签到 ,获得积分10
44秒前
忱cx完成签到 ,获得积分10
45秒前
Liuyuting1008发布了新的文献求助10
46秒前
CRane发布了新的文献求助10
47秒前
大模型应助白玫瑰采纳,获得10
49秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265359
求助须知:如何正确求助?哪些是违规求助? 2905399
关于积分的说明 8333544
捐赠科研通 2575647
什么是DOI,文献DOI怎么找? 1400044
科研通“疑难数据库(出版商)”最低求助积分说明 654640
邀请新用户注册赠送积分活动 633500