Social Media Data Analysis for Enhancing Student Evaluation of Teaching Styles

社会化媒体 数学教育 计算机科学 心理学 数据科学 社会学 万维网
作者
Walaa Walaa,Najla M. Alnaqbi,Sanjar Mirzaliev,Dina Sabry Said
出处
期刊:Fusion : Practice and applications 卷期号:17 (2): 232-248
标识
DOI:10.54216/fpa.170218
摘要

In the realm of education, understanding the impact of different teaching styles on student engagement and satisfaction is essential. Recent advancements in sentiment analysis provide new avenues for evaluating student feedback, particularly through informal channels such as social media. While formal student evaluations offer structured feedback on teaching styles, they may not fully capture the nuanced opinions and sentiments expressed by students in informal settings, such as social media. This research aims to address the gap by integrating sentiment analysis of social media data to evaluate teaching effectiveness across various styles and comparing it with formal evaluation results. This study employs sentiment analysis using the VADER (Valence Aware Dictionary and sEntiment Reasoner) tool to analyze student posts on social media platforms. The analysis includes the extraction of sentiment distributions, identification of common keywords, and tracking of sentiment trends over time. Additionally, formal student evaluations (Likert scale) are collected to offer a direct comparison. The teaching styles analyzed include lecture-based teaching, project-based learning, flipped classrooms, online learning, hybrid learning, and traditional exam-based learning. The findings demonstrate that student sentiment varies significantly across teaching styles. Flipped classrooms and project-based learning received the highest positive sentiment scores, while traditional exam-based teaching showed the most negative sentiment. Social media feedback tended to align with formal evaluations for certain teaching styles, such as the flipped classroom and hybrid learning but showed divergence in others, like online learning, which received higher sentiment in social media feedback. Trends over time reveal evolving sentiments, with fluctuating satisfaction as the academic semester progressed. The integration of social media sentiment analysis provides a more dynamic and real-time understanding of student experiences, offering deeper insights into teaching style effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sheh发布了新的文献求助30
1秒前
无语的长颈鹿完成签到,获得积分10
1秒前
1秒前
fisher完成签到,获得积分10
1秒前
ll2925203发布了新的文献求助10
2秒前
柠檬01210发布了新的文献求助10
2秒前
科研通AI5应助llj采纳,获得10
2秒前
大大小小完成签到,获得积分20
2秒前
嘚嘚完成签到,获得积分10
3秒前
loop发布了新的文献求助10
3秒前
3秒前
Roach完成签到,获得积分10
5秒前
汉堡包应助1l2kl采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
sheh完成签到,获得积分20
9秒前
小龅牙吖发布了新的文献求助10
10秒前
10秒前
Passionfruit发布了新的文献求助10
11秒前
Long_Bai发布了新的文献求助10
11秒前
西奥发布了新的文献求助10
11秒前
许起眸发布了新的文献求助10
11秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得30
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400