异核分子
材料科学
电子转移
二氧化碳
Atom(片上系统)
对偶(语法数字)
还原(数学)
二氧化碳电化学还原
电催化剂
电子
化学物理
光化学
纳米技术
核磁共振
电极
催化作用
物理化学
电化学
有机化学
一氧化碳
核磁共振波谱
物理
化学
几何学
数学
计算机科学
量子力学
文学类
艺术
嵌入式系统
作者
Qi Tang,Qi Hao,Qian Zhu,Junxiu Wu,Keke Huang,Kai Liu,Jun Lü
标识
DOI:10.1002/aenm.202403778
摘要
Abstract The metal–metal (M 1 –M 2 ) interactions in heteronuclear dual‐atom catalysts (HNDACs) significantly optimize the electronic properties of the active sites, resulting in the promotion of the reaction kinetics in electrocatalysis. However, the regulation mechanisms in these M 1 –M 2 dual‐atom sites still remain unclear. Herein, the intrinsic electron transfer in Fe–Zn dual‐atom sites are revealed for facilitating electrocatalytic carbon dioxide reduction (ECO 2 R) to carbon monoxide (CO). The electronegativity difference between the Fe and Zn centers induces the specific electron transfer from Zn to Fe, which regulates the electron structures of the active Zn sites, leading to the optimized reaction pathway of CO 2 ‐to‐CO conversion on these sites. The Fe–Zn HNDAC (FeZnNC) exhibits superior ECO 2 R performances than the single‐atom Fe/Zn catalysts (FeNC and ZnNC) in the typical H‐cell system, the maximum CO partial current density on FeZnNC reaches more than 3.3 and 1.8 folds of those on FeNC and ZnNC, respectively. More importantly, in a strongly acidic medium (pH = 1), FeZnNC achieves CO Faradaic efficiencies greater than 94% in the current density range of 100–400 mA cm −2 . This work uncovers the intrinsic electron transfer at the heteronuclear diatomic sites, providing new insights for the rational design of high‐performance HNDACs toward industrial electrocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI