Development and interpretation of a multimodal predictive model for prognosis of gastrointestinal stromal tumor

主旨 医学 间质瘤 队列 H&E染色 医学诊断 列线图 放射科 模式治疗法 内科学 病理 间质细胞 肿瘤科 免疫组织化学
作者
XianHao Xiao,Xu Han,YeFei Sun,Guoliang Zheng,Miao Qi,Yulong Zhang,JiaYing Tan,Gang Liu,QianRu He,Jianping Zhou,Zhichao Zheng,GuiYang Jiang,Song He
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00636-4
摘要

Abstract Gastrointestinal stromal tumor (GIST) is the most common mesenchymal original tumor in gastrointestinal (GI) tract and is considered to have varying malignant potential. With the advancement of computer science, radiomics technology and deep learning had been applied in medical researches. It’s vital to construct a more accurate and reliable multimodal predictive model for recurrence-free survival (RFS) aiding for clinical decision-making. A total of 254 patients underwent surgery and pathologically diagnosed with GIST in The First Hospital of China Medical University from 2019 to 2022 were included in the study. Preoperative contrast enhanced computerized tomography (CE-CT) and hematoxylin/eosin (H&E) stained whole slide images (WSI) were acquired for analysis. In the present study, we constructed a sum of 11 models while the multimodal model (average C-index of 0.917 on validation set in 10-fold cross validation) performed the best on external validation cohort with an average C-index of 0.864. The multimodal model also reached statistical significance when validated in the external validation cohort ( n = 42) with a p-value of 0.0088 which pertained to the recurrence-free survival (RFS) comparison between the high and low groups using the optimal threshold on the predictive score. We also explored the biological significance of radiomics and pathomics features by visualization and quantitative analysis. In the present study, we constructed a multimodal model predicting RFS of GIST which was prior over unimodal models. We also proposed hypothesis on the correlation between morphology of tumor cell and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天完成签到 ,获得积分10
2秒前
Jasper应助Cindy采纳,获得10
3秒前
旧言颜延完成签到 ,获得积分10
3秒前
alverine发布了新的文献求助10
4秒前
个性的南珍完成签到 ,获得积分10
4秒前
折柳完成签到 ,获得积分10
4秒前
细心小鸭子完成签到,获得积分10
5秒前
一一一完成签到,获得积分10
5秒前
5秒前
辛勤怀绿完成签到,获得积分10
5秒前
6秒前
7秒前
htt完成签到,获得积分10
7秒前
cheersyu发布了新的文献求助10
7秒前
8秒前
念所三旬发布了新的文献求助10
9秒前
奶糖爱果冻完成签到 ,获得积分10
10秒前
大唐元给大唐元的求助进行了留言
11秒前
优秀沛春发布了新的文献求助10
11秒前
研友_pnx7JL发布了新的文献求助10
11秒前
今天你读文献了吗完成签到,获得积分10
12秒前
12秒前
13秒前
concise完成签到 ,获得积分10
13秒前
14秒前
hhh完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
畅快从云完成签到 ,获得积分10
15秒前
15秒前
15秒前
田様应助周而复始@采纳,获得10
15秒前
羲合发布了新的文献求助10
16秒前
keep完成签到 ,获得积分10
16秒前
17秒前
研友_pnx7JL完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
TYT发布了新的文献求助10
18秒前
CR发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836