合金
材料科学
电解质
锑
锂(药物)
化学工程
阳极
X射线光电子能谱
电镀(地质)
冶金
电极
化学
物理化学
地球物理学
医学
地质学
工程类
内分泌学
作者
Berhanu Degagsa Dandena,Wei‐Nien Su,Dah‐Shyang Tsai,Yosef Nikodimos,Bereket Woldegbreal Taklu,Hailemariam Kassa Bezabh,Gidey Bahre Desta,Sheng‐Chiang Yang,Keseven Lakshmanan,Hwo‐Shuenn Sheu,Chia‐Hsin Wang,She‐Huang Wu,Bing‐Joe Hwang
标识
DOI:10.1002/smtd.202400571
摘要
Abstract The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li 6 PS 5 Cl (LPSC‐P) to form Li–Sb alloy. The Li–Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long‐term stability, and achieving the highest critical current density of 14.5 mA cm −2 (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li–Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li–Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy‐forming electrolytes for advanced solid‐state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI