Energy Dissipation and Toughening of Covalent Networks via a Sacrificial Conformation Approach

共价键 韧性 材料科学 网络共价键合 刚度 消散 弹性体 增韧 自愈水凝胶 模数 复合材料 纳米技术 化学 高分子化学 物理 有机化学 热力学
作者
Hao Wang,Zhiyou Wei,Zhiwei Liu,Bin Zheng,Zhaoming Zhang,Xuzhou Yan,Linli He,Tao Li,Dong Zhao
出处
期刊:Angewandte Chemie [Wiley]
被引量:3
标识
DOI:10.1002/anie.202416790
摘要

Abstract Covalent polymer networks find wide utility in diverse engineering applications owing to their desirable stiffness and resilience. However, the rigid covalent chemical structure between crosslinking points imposes limitations on enhancing their toughness. Although the incorporation of sacrificial chemical bonds has shown promise in improving toughness through energy dissipation, composite networks struggle to maintain both rapid recovery and stiffness. Consequently, a significant challenge persists in achieving a covalent network that combines high strength, stiffness, toughness, and fast recovery performance. To address this challenge, we propose a novel sacrificial structure termed “sacrificial conformation.” In this approach, β‐cyclodextrin is covalently embedded into the network skeleton as the sacrificial conformation element. Compared to traditional covalent networks (LCN), well‐designed cyclodextrin‐embedded covalent network (CCN) exhibit a 100‐fold increase in Young's modulus and a 60‐fold increase in toughness. Importantly, CCN maintains excellent elasticity, ensuring swift recovery after deformation. This sacrificial conformational strategy enables efficient energy dissipation without necessitating the rupture of chemical bonds, thereby overcoming the limitations of traditional approaches. This advancement holds great promise for the design and fabrication of advanced elastomers and hydrogels with superior mechanical properties and dynamic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助犹豫大侠采纳,获得10
刚刚
liz_完成签到,获得积分10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
summer3moon应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小树完成签到,获得积分10
2秒前
sya发布了新的文献求助10
3秒前
Santiana发布了新的文献求助10
5秒前
5秒前
小树发布了新的文献求助10
5秒前
6秒前
6秒前
所所应助跳跃凡桃采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
12秒前
fkdbdy完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
Santiana完成签到,获得积分20
16秒前
贪狼先森发布了新的文献求助10
17秒前
姜姜完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
19秒前
20秒前
Ava应助爱吃糯米的芒果采纳,获得10
20秒前
乐乐应助温赢采纳,获得10
21秒前
22秒前
ding应助kkk采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093