刀(考古)
转移模塑
热固性聚合物
风力发电
可扩展性
计算机科学
环境科学
工艺工程
工程类
材料科学
机械工程
复合材料
模具
数据库
电气工程
作者
Ryan W. Clarke,Erik G. Rognerud,Allen Puente‐Urbina,David Barnes,Paul Murdy,Michael L. McGraw,Jimmy M. Newkirk,Ryan Beach,Jacob A. Wrubel,Levi J. Hamernik,Katherine A. Chism,A. Baer,Gregg T. Beckham,Robynne E. Murray,Nicholas A. Rorrer
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-08-22
卷期号:385 (6711): 854-860
标识
DOI:10.1126/science.adp5395
摘要
Wind energy is helping to decarbonize the electrical grid, but wind blades are not recyclable, and current end-of-life management strategies are not sustainable. To address the material recyclability challenges in sustainable energy infrastructure, we introduce scalable biomass-derivable polyester covalent adaptable networks and corresponding fiber-reinforced composites for recyclable wind blade fabrication. Through experimental and computational studies, including vacuum-assisted resin-transfer molding of a 9-meter wind blade prototype, we demonstrate drop-in technological readiness of this material with existing manufacture techniques, superior properties relative to incumbent materials, and practical end-of-life chemical recyclability. Most notable is the counterintuitive creep suppression, outperforming industry state-of-the-art thermosets despite the dynamic cross-link topology. Overall, this report details the many facets of wind blade manufacture, encompassing chemistry, engineering, safety, mechanical analyses, weathering, and chemical recyclability, enabling a realistic path toward biomass-derivable, recyclable wind blades.
科研通智能强力驱动
Strongly Powered by AbleSci AI