材料科学
钙钛矿(结构)
能量转换效率
钝化
双功能
光伏系统
退火(玻璃)
光电子学
电压
纳米技术
钙钛矿太阳能电池
图层(电子)
热的
传输层
开路电压
能量转换
功率损耗
光伏
太阳能
工作职能
作者
Yun Tong,Hengzhuo Cai,Wanyang Lyu,Xubing Lu,Xingsen Gao,Jun‐Ming Liu,Sujuan Wu
标识
DOI:10.1021/acsami.4c13156
摘要
The large voltage loss (Vloss) mainly stems from the mismatch between the perovskite film and electron transport layer in CsPbI2Br-based all-inorganic perovskite solar cells (I-PSCs), which restricts the power conversion efficiency (PCE) of devices. To address this issue, potassium benzoate (BAP) is first introduced as a bifunctional passivation material to regulate the TiO2/CsPbI2Br interface, reduce the Vloss, and improve the photovoltaic performance of CsPbI2Br-based I-PSCs. Eventually, the champion PCE of CsPbI2Br-based I-PSCs without a hole transport layer modified by BAP (Target-PSCs) improves to 14.90% from the 12.14% of reference PSCs. The open-circuit voltage (Voc) increases to 1.27 V from the initial 1.14 V after BAP modification. A series of characterizations show that BAP modification can not only optimize the energy level alignment of I-PSCs but also passivize the surface defects caused by uncoordinated Cs+/Pb2+. Moreover, the Target-PSCs without encapsulation demonstrate better thermal stability, which can maintain 107.6% of the original PCE after annealing at 160 °C for 140 min in humid air. While the reference PSCs only maintain 76.5% of their initial PCE after annealing at the same process. This work provides a simple strategy to modify the buried interface and improve the performance of CsPbI2Br-based I-PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI