亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An early warning indicator trained on stochastic disease-spreading models with different noises

准备 计算机科学 噪音(视频) 预警系统 爆发 传染病(医学专业) 疾病 疾病监测 机器学习 人工智能 数据科学 风险分析(工程) 医学 电信 病理 政治学 法学 图像(数学)
作者
Amit K. Chakraborty,Shan Gao,Reza Miry,Pouria Ramazi,Russell Greiner,Mark A. Lewis,Hao Wang
出处
期刊:Journal of the Royal Society Interface [The Royal Society]
卷期号:21 (217) 被引量:2
标识
DOI:10.1098/rsif.2024.0199
摘要

The timely detection of disease outbreaks through reliable early warning signals (EWSs) is indispensable for effective public health mitigation strategies. Nevertheless, the intricate dynamics of real-world disease spread, often influenced by diverse sources of noise and limited data in the early stages of outbreaks, pose a significant challenge in developing reliable EWSs, as the performance of existing indicators varies with extrinsic and intrinsic noises. Here, we address the challenge of modelling disease when the measurements are corrupted by additive white noise, multiplicative environmental noise and demographic noise into a standard epidemic mathematical model. To navigate the complexities introduced by these noise sources, we employ a deep learning algorithm that provides EWS in infectious disease outbreaks by training on noise-induced disease-spreading models. The indicator's effectiveness is demonstrated through its application to real-world COVID-19 cases in Edmonton and simulated time series derived from diverse disease spread models affected by noise. Notably, the indicator captures an impending transition in a time series of disease outbreaks and outperforms existing indicators. This study contributes to advancing early warning capabilities by addressing the intricate dynamics inherent in real-world disease spread, presenting a promising avenue for enhancing public health preparedness and response efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
矜持完成签到 ,获得积分10
17秒前
24秒前
28秒前
Pattis完成签到 ,获得积分10
31秒前
小蘑菇应助科研通管家采纳,获得10
45秒前
wanci应助科研通管家采纳,获得10
45秒前
国色不染尘完成签到,获得积分10
56秒前
1分钟前
结实的半双完成签到,获得积分10
1分钟前
1分钟前
芙瑞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Azlne完成签到,获得积分10
2分钟前
2分钟前
zhjl发布了新的文献求助10
3分钟前
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
4分钟前
清脆语海发布了新的文献求助10
4分钟前
李爱国应助清脆语海采纳,获得10
4分钟前
4分钟前
4分钟前
MiaMia应助科研通管家采纳,获得30
4分钟前
科研通AI6应助科研通管家采纳,获得30
4分钟前
4分钟前
香蕉觅云应助zl采纳,获得10
4分钟前
zym完成签到 ,获得积分10
5分钟前
5分钟前
ZYP发布了新的文献求助10
6分钟前
深情安青应助朱羊羊采纳,获得10
6分钟前
6分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574